Roof disaster has always been an important factor restricting coal mine safety production.Acidic effect can reform the rock mass structure to weaken the macroscopic strength characteristics,which is an effective way t...Roof disaster has always been an important factor restricting coal mine safety production.Acidic effect can reform the rock mass structure to weaken the macroscopic strength characteristics,which is an effective way to control the hard limestone roof.In this study,the effects of various factors on the reaction characteristics and mechanical properties of limestone were analyzed.The results show that the acid with stronger hydrogen production capacity after ionization(pK_(a)<0)has more prominent damage to the mineral grains of limestone.When pKa increases from−8.00 to 15.70,uniaxial compressive strength and elastic modulus of limestone increase by 117.22%and 75.98%.The influence of acid concentration is manifested in the dissolution behavior of mineral crystals,the crystal defects caused by large-scale acid action will lead to the deterioration of limestone strength,and the strength after 15%concentration reformation can be reduced by 59.42%.The effect of acidification time on limestone has stages and is the most obvious in the initial metathesis reaction stage(within 60 min).The key to the strength damage of acidified limestone is the participation of hydrogen ions in the reaction system.Based on the analytic hierarchy process method,the influence weights of acid type,acid concentration and acidification time on strength are 24.30%,59.54% and 16.16%,respectively.The research results provide theoretical support for the acidification control of hard limestone roofs in coal mines.展开更多
Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,n...Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,numerous pores,and disordered carbon layers in HCs plays a significant role in determining their sodium storage ability,but these structural features depend on the precursor used.The influence of functional groups,including heteroatoms and oxygen-containing groups,and the microstructure of the precursor on the physical and electrochemical properties of the HC produced are evaluated,and the effects of carbonization conditions(carbonization temperature,heating rate and atmosphere)are also discussed.展开更多
WC-6MoxC-0.47Cr3C2-0.28VC binderless carbide was prepared by hot pressing (1700 °C, 20 MPa). The sample was observed and analyzed by scanning electron microscopy, energy dispersive X–ray spectroscopy and X–ra...WC-6MoxC-0.47Cr3C2-0.28VC binderless carbide was prepared by hot pressing (1700 °C, 20 MPa). The sample was observed and analyzed by scanning electron microscopy, energy dispersive X–ray spectroscopy and X–ray diffraction. The results show that during the hot pressing process, W atoms dissolve substantially into the MoxC crystal lattices; whilst, the reverse dissolution of Mo atoms into the WC crystal lattices takes place. Consequently, the main phase and binder phase structure are formed. The phase compositions of the main phase and binder phase are a WC-based solid solution containing Mo and a Mo2C-based solid solution containing W, respectively. The isotropic dissolution and precipitation of W and Mo atoms do not result in substantial carbide coarsening. The mechanism for the densification was discussed.展开更多
Cemented tungsten carbide with ultra fine grains was prepared via microwave sintering.η phase(W3Co3C) was formed on the surface of the samples during the preparation process.Extra carbon black was premixed and the ...Cemented tungsten carbide with ultra fine grains was prepared via microwave sintering.η phase(W3Co3C) was formed on the surface of the samples during the preparation process.Extra carbon black was premixed and the influence of carbon content on mechanical properties was studied.The results show that the maximum value of hardness and transverse rupture strength are HRA 93.2 and 3396 MPa respectively when the carbon black content is 0.45%.The microstructure investigated by SEM show that the WC grains growth mainly occurs during the early stage of microwave sintering by the coalescence of grains.展开更多
The as-sintered sinter skin of WC-11Co-0.71Cr3C2-0.06RE cemented carbide with WC+βmicrostructure was analyzed by scanning electron microscope, energy dispersive X-ray spectroscope and X-ray diffractometer. RE repres...The as-sintered sinter skin of WC-11Co-0.71Cr3C2-0.06RE cemented carbide with WC+βmicrostructure was analyzed by scanning electron microscope, energy dispersive X-ray spectroscope and X-ray diffractometer. RE represents La-, Ce-, Pr- and Nd-containing mischmetal, andβis cobalt-based binder phase. It was discovered that La, Ce, Pr and Nd migrated directionally from the alloy to the sinter skin to combine with the impurity elements S and O from the sintering atmosphere during the sintering process. As a result, main dispersed phase RE2S3 and minor RE2O2S were formed in situ on the sinter skin. The mechanisms for the stimulation of the migration activity and the directional migration of RE atoms were discussed in terms of the thermodynamics stability of Cr3C2, solubility characteristic of Cr in Co and the polarization or ionization of RE atoms.展开更多
Effects of Al content and heat treatment on the structure,hardness and electrochemical properties of FeCoNiCrCu0.5Alx high-entropy alloys were investigated.The phase structure of as-cast alloys evolves from FCC phase ...Effects of Al content and heat treatment on the structure,hardness and electrochemical properties of FeCoNiCrCu0.5Alx high-entropy alloys were investigated.The phase structure of as-cast alloys evolves from FCC phase to BCC phase with the increase of Al content.The stable phase of FeCoNiCrCu0.5Alx high-entropy alloys will transform from FCC phase to FCC+BCC duplex phases when x value increases from 0.5 to 1.5.The hardness of BCC phase is higher than that of FCC phase,and the corrosion resistance of BCC phase is better than FCC phase in chlorine ion and acid medium.High hardness and good corrosion resistance can be obtained in as-cast FeCoNiCrCu0.5Al1.0 alloy.展开更多
WC-8Co cemented carbide samples were processed via microwave irradiation in a 2.45 GHz, high-power multi-mode microwave cavity. The densification of the compacts and the microstructures of the prepared alloys were stu...WC-8Co cemented carbide samples were processed via microwave irradiation in a 2.45 GHz, high-power multi-mode microwave cavity. The densification of the compacts and the microstructures of the prepared alloys were studied. The results demonstrate that the liquid phase is formed around 1300 ℃ and nearly full densification is obtained at 1450 ℃ for 5 min via microwave irradiation. The microstructures of microwave sintered samples have finer and more uniform WC grains than those of vacuum sintered samples. Besides, the WC grain size and distribution are only decided by the sintering temperature. Holding time has negligible effects on them. No matter how holding time is, the mean grain size is 2.7 pan when the sintering temperature is kept at 1450 ℃.展开更多
Finite dement formulations are used to simulate the evolution of the elastoplastic response of functionally graded cemented carbides (FGCC) due to thermal loading. The geometry of specimens is an axisymmetric solid ...Finite dement formulations are used to simulate the evolution of the elastoplastic response of functionally graded cemented carbides (FGCC) due to thermal loading. The geometry of specimens is an axisymmetric solid cylinder with a two-dimensional gradient. The elastoplastic constitutive relationship is developed by constraint factors. Numerical results show that compressive stresses occur in the surface zone and tensile stresses in the cobalt rich zone when the temperature drops from the initial stress-free temperature of 800 to 0℃. The maximum value of the surface compressive stress is 254 MPa and the maximum value of the tensile stress is 252 MPa in the cobalt rich zones. When the cobalt concentration difference in the specimens is equal to or greater than 0.3, there is pronounced plastic flow in cobalt rich zone. When the temperature heats up from 0 to 800 ℃, the total plastic strain reaches 0.001 4. Plastic flow has a significant effect on the reduction of thermal stress concentration.展开更多
A novel dynamically controlled plasma arc welding process was introduced,which is able tominimize heat input into the workpiece materials while maintaining desired full penetration,and it was used to weld Ti-6Al-4V al...A novel dynamically controlled plasma arc welding process was introduced,which is able tominimize heat input into the workpiece materials while maintaining desired full penetration,and it was used to weld Ti-6Al-4V alloy sheets.The microstructures,facture surfaces and microhardness of the welded joints were characterized by using optical microscope,scanning electron microscope (SEM) and Vickers microhardness tester.Comparing with welds such as gas tungsten arc and conventional plasma arc processes,the experimental results revealed the improvements when using the present process including:1) reducing prior-beta (β) grain size and prohibiting formation of hard martensite phases in the fusion zone due to the decreased heat input;and 2) better toughness and higher hardness.展开更多
Based on the characteristics of ATM system and the special requirement of financial transaction, an overall design of hardware and software structure of ATM was made. For software structure, the pattern of modules and...Based on the characteristics of ATM system and the special requirement of financial transaction, an overall design of hardware and software structure of ATM was made. For software structure, the pattern of modules and table? drive is adopted to realize the security of financial transaction and the diagnosis of communication fault. A new method, which is based on the application layer, transport layer and network layer, is used for diagnosing communication fault. Supporting both magnetic card and IC card, the system has been put into use in real financial systems, and has brought about both economic and social effects.展开更多
AIM: To build up the research models of hepatic fibrosis in mice.METHODS: Inbred wild-type FVB/N mice were either treated with alpha-naphthyl-isothiocyanate (ANIT), allyl alcohol (AA),carbon tetrachloride (CCl4...AIM: To build up the research models of hepatic fibrosis in mice.METHODS: Inbred wild-type FVB/N mice were either treated with alpha-naphthyl-isothiocyanate (ANIT), allyl alcohol (AA),carbon tetrachloride (CCl4), 3,5-diethoxycarbonyl-l,4-dihydrocollidine (DDC), and silica, or subjected to common bile duct ligation (CBDL) to induce hepatic injury. Liver biopsies were performed every 4 wk to evaluate hepatic fibrosis over a period of 6 mo. Cumulative cirrhosis and survival curves were constructed by life table method and compared with Wilcoxon test.RESULTS: Under the dosages used, there was neither mortality nor cirrhosis in AA and silica-treated groups. DDC and ANIT caused cirrhosis within 4-12 and 12-24 wk, respectively.Both showed significantly faster cirrhosis induction at high dosages without significant alteration of survival. The duration for cirrhosis induction by CCl4 ranged from 4 to 20 wk, mainly dependent upon the dosage. However, the increase in CCl4 dosage significantly worsened survival. Intraperitoneal CCl4 administration resulted in better survival in comparison with garage administration at high dosage, but not at medium and low dosages. After CBDL, all the mice developed liver cirrhosis within 4-8 wk and then died by the end of 26 wk.CONCLUSION: CBDL and administrations of ANIT, CCl4, and DDC ensured liver cirrhosis. CBDL required the least amount of time in cirrhosis induction, but caused shortened lives of mice. It was followed by DDC and ANIT administration with favorable survival. As for CCl4, the speed of cirrhosis induction and the mouse survival depended upon the dosages and the administration route.展开更多
Vanadium carbide/titanium carbide (VC/TiC) superlattice films were synthesized by magnetron sputtering method. The effects of modulation period on the microstructure evolution and mechanical properties were investig...Vanadium carbide/titanium carbide (VC/TiC) superlattice films were synthesized by magnetron sputtering method. The effects of modulation period on the microstructure evolution and mechanical properties were investigated by EDXA, XRD, HRTEM and nano-indentation. The results reveal that the VC/TiC superlattice films form an epitaxial structure when their modulation period is less than a critical value, accompanied with a remarkable increase in hardness. Further increasing the modulation period, the hardness of superlattices decreases slowly to the rule-of-mixture value due to the destruction of epitaxial structures. The XRD results reveal that three-directional strains are generated in superlattices when the epitaxial structure is formed, which may change the modulus of constituent layers. This may explain the remarkable hardness enhancement of VC/TiC superlattices.展开更多
BcpCAL, the homologous gene of CAL, was isolated from Chinese cabbage. Unlike bobcat of cauliflower, BcpCAL did not hold the terminating mutation in the fifth e-con. After crosses of cauliflower with Chinese cabbage, ...BcpCAL, the homologous gene of CAL, was isolated from Chinese cabbage. Unlike bobcat of cauliflower, BcpCAL did not hold the terminating mutation in the fifth e-con. After crosses of cauliflower with Chinese cabbage, the resultant hybrids failed to form curd, which implicates the genetic complement of BcpCAL to the mutated Bob- CAL in the function of curd formation. One of CAL gene isolated from the hybrid apparently comes from the female parent (Chinese cabbage) even though there are a few of the biases substituted and deleted. The result offers the molecular and genetic evidences for the Study of biological function of CAL in morphological genetics of curd.展开更多
基金Project(2021YFC2902102)supported by the National Key Research and Development Program of ChinaProject(52374142)supported by the National Natural Science Foundation of ChinaProject(JSTU-2022-066)supported by the Young Talent Support Project of Jiangsu Association for Science and Technology,China。
文摘Roof disaster has always been an important factor restricting coal mine safety production.Acidic effect can reform the rock mass structure to weaken the macroscopic strength characteristics,which is an effective way to control the hard limestone roof.In this study,the effects of various factors on the reaction characteristics and mechanical properties of limestone were analyzed.The results show that the acid with stronger hydrogen production capacity after ionization(pK_(a)<0)has more prominent damage to the mineral grains of limestone.When pKa increases from−8.00 to 15.70,uniaxial compressive strength and elastic modulus of limestone increase by 117.22%and 75.98%.The influence of acid concentration is manifested in the dissolution behavior of mineral crystals,the crystal defects caused by large-scale acid action will lead to the deterioration of limestone strength,and the strength after 15%concentration reformation can be reduced by 59.42%.The effect of acidification time on limestone has stages and is the most obvious in the initial metathesis reaction stage(within 60 min).The key to the strength damage of acidified limestone is the participation of hydrogen ions in the reaction system.Based on the analytic hierarchy process method,the influence weights of acid type,acid concentration and acidification time on strength are 24.30%,59.54% and 16.16%,respectively.The research results provide theoretical support for the acidification control of hard limestone roofs in coal mines.
文摘Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,numerous pores,and disordered carbon layers in HCs plays a significant role in determining their sodium storage ability,but these structural features depend on the precursor used.The influence of functional groups,including heteroatoms and oxygen-containing groups,and the microstructure of the precursor on the physical and electrochemical properties of the HC produced are evaluated,and the effects of carbonization conditions(carbonization temperature,heating rate and atmosphere)are also discussed.
基金Project (51074189) supported by the National Natural Science Foundation of ChinaProject (20100162110001) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2011BAE09B02) supported by the National Key Technology R&D Program of China
文摘WC-6MoxC-0.47Cr3C2-0.28VC binderless carbide was prepared by hot pressing (1700 °C, 20 MPa). The sample was observed and analyzed by scanning electron microscopy, energy dispersive X–ray spectroscopy and X–ray diffraction. The results show that during the hot pressing process, W atoms dissolve substantially into the MoxC crystal lattices; whilst, the reverse dissolution of Mo atoms into the WC crystal lattices takes place. Consequently, the main phase and binder phase structure are formed. The phase compositions of the main phase and binder phase are a WC-based solid solution containing Mo and a Mo2C-based solid solution containing W, respectively. The isotropic dissolution and precipitation of W and Mo atoms do not result in substantial carbide coarsening. The mechanism for the densification was discussed.
基金Project (2008890) supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,China
文摘Cemented tungsten carbide with ultra fine grains was prepared via microwave sintering.η phase(W3Co3C) was formed on the surface of the samples during the preparation process.Extra carbon black was premixed and the influence of carbon content on mechanical properties was studied.The results show that the maximum value of hardness and transverse rupture strength are HRA 93.2 and 3396 MPa respectively when the carbon black content is 0.45%.The microstructure investigated by SEM show that the WC grains growth mainly occurs during the early stage of microwave sintering by the coalescence of grains.
基金Project(51074189)supported by the National Natural Science Foundation of ChinaProject(2012ZX04003–021)supported by the National Science&Technology Special Foundation of ChinaProject(Y2012–010)supported by the Nonferrous Metals Research Foundation from Hunan Nonferrous Metals Holding Group Co.,Ltd.–CSU,China
文摘The as-sintered sinter skin of WC-11Co-0.71Cr3C2-0.06RE cemented carbide with WC+βmicrostructure was analyzed by scanning electron microscope, energy dispersive X-ray spectroscope and X-ray diffractometer. RE represents La-, Ce-, Pr- and Nd-containing mischmetal, andβis cobalt-based binder phase. It was discovered that La, Ce, Pr and Nd migrated directionally from the alloy to the sinter skin to combine with the impurity elements S and O from the sintering atmosphere during the sintering process. As a result, main dispersed phase RE2S3 and minor RE2O2S were formed in situ on the sinter skin. The mechanisms for the stimulation of the migration activity and the directional migration of RE atoms were discussed in terms of the thermodynamics stability of Cr3C2, solubility characteristic of Cr in Co and the polarization or ionization of RE atoms.
基金Project(NCET-11-0127) supported by the Program for New Century Excellent Talents in University,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘Effects of Al content and heat treatment on the structure,hardness and electrochemical properties of FeCoNiCrCu0.5Alx high-entropy alloys were investigated.The phase structure of as-cast alloys evolves from FCC phase to BCC phase with the increase of Al content.The stable phase of FeCoNiCrCu0.5Alx high-entropy alloys will transform from FCC phase to FCC+BCC duplex phases when x value increases from 0.5 to 1.5.The hardness of BCC phase is higher than that of FCC phase,and the corrosion resistance of BCC phase is better than FCC phase in chlorine ion and acid medium.High hardness and good corrosion resistance can be obtained in as-cast FeCoNiCrCu0.5Al1.0 alloy.
基金Project (51274107) supported by the National Natural Science Foundation of China
文摘WC-8Co cemented carbide samples were processed via microwave irradiation in a 2.45 GHz, high-power multi-mode microwave cavity. The densification of the compacts and the microstructures of the prepared alloys were studied. The results demonstrate that the liquid phase is formed around 1300 ℃ and nearly full densification is obtained at 1450 ℃ for 5 min via microwave irradiation. The microstructures of microwave sintered samples have finer and more uniform WC grains than those of vacuum sintered samples. Besides, the WC grain size and distribution are only decided by the sintering temperature. Holding time has negligible effects on them. No matter how holding time is, the mean grain size is 2.7 pan when the sintering temperature is kept at 1450 ℃.
基金The National Natural Science Foundation of China(No.50323008,31070517)Scientific Research Foundation of Guangxi Education Department(No.201203YB097)
文摘Finite dement formulations are used to simulate the evolution of the elastoplastic response of functionally graded cemented carbides (FGCC) due to thermal loading. The geometry of specimens is an axisymmetric solid cylinder with a two-dimensional gradient. The elastoplastic constitutive relationship is developed by constraint factors. Numerical results show that compressive stresses occur in the surface zone and tensile stresses in the cobalt rich zone when the temperature drops from the initial stress-free temperature of 800 to 0℃. The maximum value of the surface compressive stress is 254 MPa and the maximum value of the tensile stress is 252 MPa in the cobalt rich zones. When the cobalt concentration difference in the specimens is equal to or greater than 0.3, there is pronounced plastic flow in cobalt rich zone. When the temperature heats up from 0 to 800 ℃, the total plastic strain reaches 0.001 4. Plastic flow has a significant effect on the reduction of thermal stress concentration.
基金Project(2009CB939705) supported by the National Basic Research Program of ChinaProject(200233) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (FANEDD)
文摘A novel dynamically controlled plasma arc welding process was introduced,which is able tominimize heat input into the workpiece materials while maintaining desired full penetration,and it was used to weld Ti-6Al-4V alloy sheets.The microstructures,facture surfaces and microhardness of the welded joints were characterized by using optical microscope,scanning electron microscope (SEM) and Vickers microhardness tester.Comparing with welds such as gas tungsten arc and conventional plasma arc processes,the experimental results revealed the improvements when using the present process including:1) reducing prior-beta (β) grain size and prohibiting formation of hard martensite phases in the fusion zone due to the decreased heat input;and 2) better toughness and higher hardness.
文摘Based on the characteristics of ATM system and the special requirement of financial transaction, an overall design of hardware and software structure of ATM was made. For software structure, the pattern of modules and table? drive is adopted to realize the security of financial transaction and the diagnosis of communication fault. A new method, which is based on the application layer, transport layer and network layer, is used for diagnosing communication fault. Supporting both magnetic card and IC card, the system has been put into use in real financial systems, and has brought about both economic and social effects.
基金Supported by the Chang Gung Memorial Hospital, Taoyuan, Taiwan, China, CMRPG 33014, CMRPG 33063 and CMRP 800
文摘AIM: To build up the research models of hepatic fibrosis in mice.METHODS: Inbred wild-type FVB/N mice were either treated with alpha-naphthyl-isothiocyanate (ANIT), allyl alcohol (AA),carbon tetrachloride (CCl4), 3,5-diethoxycarbonyl-l,4-dihydrocollidine (DDC), and silica, or subjected to common bile duct ligation (CBDL) to induce hepatic injury. Liver biopsies were performed every 4 wk to evaluate hepatic fibrosis over a period of 6 mo. Cumulative cirrhosis and survival curves were constructed by life table method and compared with Wilcoxon test.RESULTS: Under the dosages used, there was neither mortality nor cirrhosis in AA and silica-treated groups. DDC and ANIT caused cirrhosis within 4-12 and 12-24 wk, respectively.Both showed significantly faster cirrhosis induction at high dosages without significant alteration of survival. The duration for cirrhosis induction by CCl4 ranged from 4 to 20 wk, mainly dependent upon the dosage. However, the increase in CCl4 dosage significantly worsened survival. Intraperitoneal CCl4 administration resulted in better survival in comparison with garage administration at high dosage, but not at medium and low dosages. After CBDL, all the mice developed liver cirrhosis within 4-8 wk and then died by the end of 26 wk.CONCLUSION: CBDL and administrations of ANIT, CCl4, and DDC ensured liver cirrhosis. CBDL required the least amount of time in cirrhosis induction, but caused shortened lives of mice. It was followed by DDC and ANIT administration with favorable survival. As for CCl4, the speed of cirrhosis induction and the mouse survival depended upon the dosages and the administration route.
基金Project(51201187)supported by the National Natural Science Foundation of China
文摘Vanadium carbide/titanium carbide (VC/TiC) superlattice films were synthesized by magnetron sputtering method. The effects of modulation period on the microstructure evolution and mechanical properties were investigated by EDXA, XRD, HRTEM and nano-indentation. The results reveal that the VC/TiC superlattice films form an epitaxial structure when their modulation period is less than a critical value, accompanied with a remarkable increase in hardness. Further increasing the modulation period, the hardness of superlattices decreases slowly to the rule-of-mixture value due to the destruction of epitaxial structures. The XRD results reveal that three-directional strains are generated in superlattices when the epitaxial structure is formed, which may change the modulus of constituent layers. This may explain the remarkable hardness enhancement of VC/TiC superlattices.
文摘BcpCAL, the homologous gene of CAL, was isolated from Chinese cabbage. Unlike bobcat of cauliflower, BcpCAL did not hold the terminating mutation in the fifth e-con. After crosses of cauliflower with Chinese cabbage, the resultant hybrids failed to form curd, which implicates the genetic complement of BcpCAL to the mutated Bob- CAL in the function of curd formation. One of CAL gene isolated from the hybrid apparently comes from the female parent (Chinese cabbage) even though there are a few of the biases substituted and deleted. The result offers the molecular and genetic evidences for the Study of biological function of CAL in morphological genetics of curd.