Li1.5Ga0.5Ti1.5(PO4)3(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects...Li1.5Ga0.5Ti1.5(PO4)3(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10~6 Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.展开更多
Objective The aim was to elucidate the effects of N rates on rice canopy microclimate and community health so as to provide a sci- entific basis for studying the production potential in irrigated rice with healthy can...Objective The aim was to elucidate the effects of N rates on rice canopy microclimate and community health so as to provide a sci- entific basis for studying the production potential in irrigated rice with healthy canopy. Method The effects of rice population structure traits under different N rates on rice canopy temperature, relative humidity ( RH), light transmittance and sheath blight were studied by using Sunscan canopy analysis system and HOBO( Pro Temp/RH IS logger). Result The results showed that leaf area index, plant height and tiller number had significant effects on canopy cooling, RH enhancing and light reducing. Extremely significant multiple linear regression relationships existed among canopy day temperature, day RH, LAI and tiller number, and among light transmittance, tiller number and plant height. At flowering stage, per unit LAI could result in a day-maximum-temperature (Tmax) deceasing of 0.87℃ and a day-minimum-RH (RHmin) enhancing of 2.5% within canopy. Similarly, 100 plants per ms could respectively cause a Tmax deceasing of 1.23℃ and an RHmin enhancing of 3.3% in rice canopy. And per 10 cm plant height and 100 plants per m^2 could respectively reduce 9.3% and 7.8% of light in canopy. Conclusion Sheath blight disease index was significantly enhanced as the canopy day temperature decreased, day RH increased and light transmittance reduced. Bigger canopy from higher nitrogen level treatment leads to a more stable canopy microclimate with little changes in temperature and RH during day and night, which has the risk of worsening canopy health. Thus, moderately controlling the space development of canopy is the basis of constructing healthy canopy in rice.展开更多
The brittle fracture probability and reliability are obtained in terms of dislocation mechanism of microcrack evolution. The statistical distribution functions and statistical deviations of elongation, strength, plast...The brittle fracture probability and reliability are obtained in terms of dislocation mechanism of microcrack evolution. The statistical distribution functions and statistical deviations of elongation, strength, plastic work, crack extension force, fracture foughness, critical and crack length, can be derived in a unified fashion.展开更多
Tensile test of the as-cast Mg-6Zn-2Er alloy was conducted at room temperature. The results indicate that the alloy is inclined to failure when the strain reaches 5.6%. The coarse secondary phases are responsible for ...Tensile test of the as-cast Mg-6Zn-2Er alloy was conducted at room temperature. The results indicate that the alloy is inclined to failure when the strain reaches 5.6%. The coarse secondary phases are responsible for the failure, especially for the Mg3Zn3Er2 phase (W-phase). It is indicated that the existence of the W-phase activates the stress concentrations due to the incapacity of W-phase for the load transfer, which results in the void at the inner of the W-phase. In comparison, the interface between the matrix and the secondary phase is stable. In conclusion, the characters of the secondary phases with respect to size, distribution, morphology and type, play an important role in the plastic deformation behavior of the alloy.展开更多
In order to improve the performance of estimating the fundamental matrix, a key problem arising in stereo vision, a novel method based on stripe constraints is presented. In contrast to traditional methods based on al...In order to improve the performance of estimating the fundamental matrix, a key problem arising in stereo vision, a novel method based on stripe constraints is presented. In contrast to traditional methods based on algebraic least-square algorithms, the proposed approach aims to minimize a cost function that is derived from the minimum radius of the Hough transform. In a structured-light system with a particular stripe code pattern, there are linear constraints that the points with the same code are on the same surface. Using the Hough transform, the pixels with the same code map to the Hough space, and the radius of the intersections can be defined as the evaluation function in the optimization progress. The global optimum solution of the fundamental matrix can be estimated using a Levenberg- Marquardt optimization iterative process based on the Hough transform radius. Results illustrate the validity of this algorithm, and prove that this method can obtain good performance with high efficiency.展开更多
A mathematical model was established for condensation on surfaces of verticalcorrugated plates based on the mechanism of heat transfer enhancement to thin down the liquid filmdue to surface tension effect between corr...A mathematical model was established for condensation on surfaces of verticalcorrugated plates based on the mechanism of heat transfer enhancement to thin down the liquid filmdue to surface tension effect between corrugated plate surfaces and liquid films. The relative heattransfer coefficients of condensation on corrugation plates were calculated in contrast withequivalent vertical plane ones. The heat transfer enhancement effects for the main geometricparameters such as pitch, height, corrugation angle, tilt angle, and fillet radii of corrugationswere analyzed to guide the optimization of corrugation structure for application. A two-scalecorrugation is suggested, which can compromise both the enhanced heat transfer effect and adequatecross section area for flows, and it makes the heat transfer coefficient 1 to 2 times more than thatof an equivalent plane one.展开更多
The hot compressive deformation behaviors of Cu-6wt.%Ag alloy were studied experimentally in the temperature range of 973.1123 K and the strain rate range of 0.01.10 s^-1.The stress increases and reaches the maximum v...The hot compressive deformation behaviors of Cu-6wt.%Ag alloy were studied experimentally in the temperature range of 973.1123 K and the strain rate range of 0.01.10 s^-1.The stress increases and reaches the maximum value when the true strain is very small,and then the stress changes slowly and tends to be stable under the action of work hardening,dynamic recovery and recrystallization.The material parameters of the conventional Arrhenius constitutive model are only related to strain under different deformation conditions,and the prediction error is large,which cannot accurately characterize the hot deformation behavior of the alloy.To describe the hot deformation behavior of the alloy accurately,a modified constitutive model was established by considering the simultaneous influence of forming temperature,strain rate and strain.The results indicate that correlation coefficient(R)and the average absolute relative error(AARE)are 0.993 and 4.2%,respectively.The modified constitutive model can accurately describe the hot deformation behavior of Cu-6wt.%Ag alloy.展开更多
The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relati...The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relationship between strength and pore structure(e.g.,pore size and its distribution)were performed,but the micro-morphology characteristics have been rarely concerned.Texture describing the surface properties of the sample is a global feature,which is an effective way to quantify the micro-morphological properties.In statistical analysis,GLCM features and Tamura texture are the most representative methods for characterizing the texture features.The mechanical strength and section image of the backfill sample prepared from three different solid concentrations of paste were obtained by uniaxial compressive strength test and scanning electron microscope,respectively.The texture features of different SEM images were calculated based on image analysis technology,and then the correlation between these parameters and the strength was analyzed.It was proved that the method is effective in the quantitative analysis on the micro-morphology characteristics of CPB.There is a significant correlation between the texture features and the unconfined compressive strength,and the prediction of strength is feasible using texture parameters of the CPB microstructure.展开更多
The nominal Ti44Al6Nb1.0Cr2.0V alloy was newly designed and prepared by vacuum consumable melting technique with the ingot sizes of d225 mm×320 mm. The results show that the average lamella colony size is 780-18...The nominal Ti44Al6Nb1.0Cr2.0V alloy was newly designed and prepared by vacuum consumable melting technique with the ingot sizes of d225 mm×320 mm. The results show that the average lamella colony size is 780-1830 μm. This as-cast alloy has a modified near lamellar(M-NL) structure that is composed of mainly larger(α2+γ) lamella colonies and smaller(B2+equiaxed γ) blocky morphology. It exhibits the moderate tensile properties at room temperature, in which the Region(5) yields the ultimate tensile strength(UTS) about 499 MPa and the elongation about 0.53%. The obvious brittle fracture characteristics and trans-granular interlamellar fracture are the predominant modes. After room temperature tensile testing, there are some <101] and a few 1/2<112] superdislocations in the γ phase. The as-cast microcrack is the main factor to deteriorate the tensile property, which results in the premature fracture, poor ductility and few dislocations. The addition of Nb, Cr and V can decrease stacking fault energy(SFE) obviously, which is helpful to enhancing the ductility of the alloy.展开更多
Due to the cyclic loading and longtime exposure under extreme environment conditions, fatigue cracks often generate in the aircraft metal structures, i.e. wing skin, fuselage skin, strigners, pylons. These cracks coul...Due to the cyclic loading and longtime exposure under extreme environment conditions, fatigue cracks often generate in the aircraft metal structures, i.e. wing skin, fuselage skin, strigners, pylons. These cracks could cause severe damages to the aircraft structures. Thus the position and size monitoring of fatigue cracks in the metal structures is very important to manufacturers as well as maintenance personnel for significantly improving the safety and reliability of aircraft. Much progress has been made for crack position monitoring in the past few years. However, the crack size monitoring is still very challenging. Fastest time of flight diffraction (FTOFD) method was developed to monitor both the position and size of a crack. FTOFD method uses an integrated sensor network to activate and receive ultrasonic waves in a structure. Diffraction waves will be generated when the ultrasonic waves pass a crack. These diffraction waves are received and analyzed to get the position and size of the crack. The experiment results show that the monitored size of the simulated crack is very close to the real size of the crack, and for frequencies of 350 and 400 kHz, the monitoring errors are both smaller than 5%.展开更多
Numerical simulation has been performed on the optical transmission enhancement properties of a one-dimensional Ag film single slit structure with grooves. The results show that the position,depth and number of the gr...Numerical simulation has been performed on the optical transmission enhancement properties of a one-dimensional Ag film single slit structure with grooves. The results show that the position,depth and number of the grooves have great influence on the optical transmission,and surface plasmon polariton and resonance mode are the primary factors. The maximal extinction ratio of 35.8 dB is achieved in the single slit structure by adjusting groove depth.展开更多
Vickers indentation test was used to study the effects of mineral composition and microstructure on crack resistance of sintered ore, and the initiation and propagation of cracks in different minerals contained in sin...Vickers indentation test was used to study the effects of mineral composition and microstructure on crack resistance of sintered ore, and the initiation and propagation of cracks in different minerals contained in sintered ore were examined. The results indicate that the microstructure of calcium ferrites is a major factor influencing crack resistance of sintered ore. Finer grain size of calcium ferrite will lead to higher cracking threshold and better crack resistance of sintered ore. The formation of calcium ferrite with fine grain size during sintering process is favorable for crack resistance of sintered ore.展开更多
基金funded by the National Natural Science Foundation of China(Nos.51672310,51272288,51972344)。
文摘Li1.5Ga0.5Ti1.5(PO4)3(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10~6 Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.
基金Supported by Oversea Project of National Natural and Science Foundationof China(30528005)RTOP Project of International RiceResearch Institute(IRRI)+1 种基金Grain High-yield Project of China(2004BA520A12)And 948 Introduction Project of the Ministry ofAgriculture(2003-Z53)~~
文摘Objective The aim was to elucidate the effects of N rates on rice canopy microclimate and community health so as to provide a sci- entific basis for studying the production potential in irrigated rice with healthy canopy. Method The effects of rice population structure traits under different N rates on rice canopy temperature, relative humidity ( RH), light transmittance and sheath blight were studied by using Sunscan canopy analysis system and HOBO( Pro Temp/RH IS logger). Result The results showed that leaf area index, plant height and tiller number had significant effects on canopy cooling, RH enhancing and light reducing. Extremely significant multiple linear regression relationships existed among canopy day temperature, day RH, LAI and tiller number, and among light transmittance, tiller number and plant height. At flowering stage, per unit LAI could result in a day-maximum-temperature (Tmax) deceasing of 0.87℃ and a day-minimum-RH (RHmin) enhancing of 2.5% within canopy. Similarly, 100 plants per ms could respectively cause a Tmax deceasing of 1.23℃ and an RHmin enhancing of 3.3% in rice canopy. And per 10 cm plant height and 100 plants per m^2 could respectively reduce 9.3% and 7.8% of light in canopy. Conclusion Sheath blight disease index was significantly enhanced as the canopy day temperature decreased, day RH increased and light transmittance reduced. Bigger canopy from higher nitrogen level treatment leads to a more stable canopy microclimate with little changes in temperature and RH during day and night, which has the risk of worsening canopy health. Thus, moderately controlling the space development of canopy is the basis of constructing healthy canopy in rice.
文摘The brittle fracture probability and reliability are obtained in terms of dislocation mechanism of microcrack evolution. The statistical distribution functions and statistical deviations of elongation, strength, plastic work, crack extension force, fracture foughness, critical and crack length, can be derived in a unified fashion.
基金Projects(51071004,51101002)supported by the National Natural Science Foundation of ChinaProject(2011BAE22B01-3)supported by the National Science and Technology Supporting Plan during the 12th Five-Year Period,China
文摘Tensile test of the as-cast Mg-6Zn-2Er alloy was conducted at room temperature. The results indicate that the alloy is inclined to failure when the strain reaches 5.6%. The coarse secondary phases are responsible for the failure, especially for the Mg3Zn3Er2 phase (W-phase). It is indicated that the existence of the W-phase activates the stress concentrations due to the incapacity of W-phase for the load transfer, which results in the void at the inner of the W-phase. In comparison, the interface between the matrix and the secondary phase is stable. In conclusion, the characters of the secondary phases with respect to size, distribution, morphology and type, play an important role in the plastic deformation behavior of the alloy.
文摘In order to improve the performance of estimating the fundamental matrix, a key problem arising in stereo vision, a novel method based on stripe constraints is presented. In contrast to traditional methods based on algebraic least-square algorithms, the proposed approach aims to minimize a cost function that is derived from the minimum radius of the Hough transform. In a structured-light system with a particular stripe code pattern, there are linear constraints that the points with the same code are on the same surface. Using the Hough transform, the pixels with the same code map to the Hough space, and the radius of the intersections can be defined as the evaluation function in the optimization progress. The global optimum solution of the fundamental matrix can be estimated using a Levenberg- Marquardt optimization iterative process based on the Hough transform radius. Results illustrate the validity of this algorithm, and prove that this method can obtain good performance with high efficiency.
文摘A mathematical model was established for condensation on surfaces of verticalcorrugated plates based on the mechanism of heat transfer enhancement to thin down the liquid filmdue to surface tension effect between corrugated plate surfaces and liquid films. The relative heattransfer coefficients of condensation on corrugation plates were calculated in contrast withequivalent vertical plane ones. The heat transfer enhancement effects for the main geometricparameters such as pitch, height, corrugation angle, tilt angle, and fillet radii of corrugationswere analyzed to guide the optimization of corrugation structure for application. A two-scalecorrugation is suggested, which can compromise both the enhanced heat transfer effect and adequatecross section area for flows, and it makes the heat transfer coefficient 1 to 2 times more than thatof an equivalent plane one.
基金Project(51675061)supported by the National Natural Science Foundation of China
文摘The hot compressive deformation behaviors of Cu-6wt.%Ag alloy were studied experimentally in the temperature range of 973.1123 K and the strain rate range of 0.01.10 s^-1.The stress increases and reaches the maximum value when the true strain is very small,and then the stress changes slowly and tends to be stable under the action of work hardening,dynamic recovery and recrystallization.The material parameters of the conventional Arrhenius constitutive model are only related to strain under different deformation conditions,and the prediction error is large,which cannot accurately characterize the hot deformation behavior of the alloy.To describe the hot deformation behavior of the alloy accurately,a modified constitutive model was established by considering the simultaneous influence of forming temperature,strain rate and strain.The results indicate that correlation coefficient(R)and the average absolute relative error(AARE)are 0.993 and 4.2%,respectively.The modified constitutive model can accurately describe the hot deformation behavior of Cu-6wt.%Ag alloy.
基金Project(51722401)supported by the National Natural Science Foundation for Excellent Young Scholars of ChinaProject(FRF-TP-18-003C1)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51734001)supported by the Key Program of National Natural Science Foundation of China
文摘The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relationship between strength and pore structure(e.g.,pore size and its distribution)were performed,but the micro-morphology characteristics have been rarely concerned.Texture describing the surface properties of the sample is a global feature,which is an effective way to quantify the micro-morphological properties.In statistical analysis,GLCM features and Tamura texture are the most representative methods for characterizing the texture features.The mechanical strength and section image of the backfill sample prepared from three different solid concentrations of paste were obtained by uniaxial compressive strength test and scanning electron microscope,respectively.The texture features of different SEM images were calculated based on image analysis technology,and then the correlation between these parameters and the strength was analyzed.It was proved that the method is effective in the quantitative analysis on the micro-morphology characteristics of CPB.There is a significant correlation between the texture features and the unconfined compressive strength,and the prediction of strength is feasible using texture parameters of the CPB microstructure.
基金Project(2011CB605504)supported by the National Basic Research Program of ChinaProject(NCET-12-0153)supported by the Program of New Century Excellent Talents in UniversityProject(51274076)supported by the National Natural Science Foundation of China
文摘The nominal Ti44Al6Nb1.0Cr2.0V alloy was newly designed and prepared by vacuum consumable melting technique with the ingot sizes of d225 mm×320 mm. The results show that the average lamella colony size is 780-1830 μm. This as-cast alloy has a modified near lamellar(M-NL) structure that is composed of mainly larger(α2+γ) lamella colonies and smaller(B2+equiaxed γ) blocky morphology. It exhibits the moderate tensile properties at room temperature, in which the Region(5) yields the ultimate tensile strength(UTS) about 499 MPa and the elongation about 0.53%. The obvious brittle fracture characteristics and trans-granular interlamellar fracture are the predominant modes. After room temperature tensile testing, there are some <101] and a few 1/2<112] superdislocations in the γ phase. The as-cast microcrack is the main factor to deteriorate the tensile property, which results in the premature fracture, poor ductility and few dislocations. The addition of Nb, Cr and V can decrease stacking fault energy(SFE) obviously, which is helpful to enhancing the ductility of the alloy.
基金Project (2012AA040209) supported by the High-Tech Research and Development Program of ChinaProject (11172053) supported by the National Natural Science Foundation of ChinaProject (12R21421900) supported by Shanghai Postdoctoral Scientific Program, China
文摘Due to the cyclic loading and longtime exposure under extreme environment conditions, fatigue cracks often generate in the aircraft metal structures, i.e. wing skin, fuselage skin, strigners, pylons. These cracks could cause severe damages to the aircraft structures. Thus the position and size monitoring of fatigue cracks in the metal structures is very important to manufacturers as well as maintenance personnel for significantly improving the safety and reliability of aircraft. Much progress has been made for crack position monitoring in the past few years. However, the crack size monitoring is still very challenging. Fastest time of flight diffraction (FTOFD) method was developed to monitor both the position and size of a crack. FTOFD method uses an integrated sensor network to activate and receive ultrasonic waves in a structure. Diffraction waves will be generated when the ultrasonic waves pass a crack. These diffraction waves are received and analyzed to get the position and size of the crack. The experiment results show that the monitored size of the simulated crack is very close to the real size of the crack, and for frequencies of 350 and 400 kHz, the monitoring errors are both smaller than 5%.
基金the Key Program of National Natural Science of China(Grant No.50734007)the Research Foundation from Ministry of Education of China (Grant No.208133)the Natural Science Foundation of Yunnan Province (Grant No.2007F005M)
文摘Numerical simulation has been performed on the optical transmission enhancement properties of a one-dimensional Ag film single slit structure with grooves. The results show that the position,depth and number of the grooves have great influence on the optical transmission,and surface plasmon polariton and resonance mode are the primary factors. The maximal extinction ratio of 35.8 dB is achieved in the single slit structure by adjusting groove depth.
文摘Vickers indentation test was used to study the effects of mineral composition and microstructure on crack resistance of sintered ore, and the initiation and propagation of cracks in different minerals contained in sintered ore were examined. The results indicate that the microstructure of calcium ferrites is a major factor influencing crack resistance of sintered ore. Finer grain size of calcium ferrite will lead to higher cracking threshold and better crack resistance of sintered ore. The formation of calcium ferrite with fine grain size during sintering process is favorable for crack resistance of sintered ore.