Abstract We identify R^7 as the pure imaginary part of octonions. Then the multiplication in octonions gives a natural almost complex structure for the unit sphere S^6. It is known that a cone over a surface M in S^6 ...Abstract We identify R^7 as the pure imaginary part of octonions. Then the multiplication in octonions gives a natural almost complex structure for the unit sphere S^6. It is known that a cone over a surface M in S^6 is an associative submanifold of R^7 if and only if M is almost complex in S^6. In this paper, we show that the Gauss-Codazzi equation for almost complex curves in S^6 are the equation for primitive maps associated to the 6-symmetric space G2/T^2, and use this to explain some of the known results. Moreover, the equation for S^1-symmetric almost complex curves in S^6 is the periodic Toda lattice, and a discussion of periodic solutions is given.展开更多
Type-2 fuzzy controllers have been mostly viewed as black-box function generators. Revealing the analytical structure of any type-2 fuzzy controller is important as it will deepen our understanding of how and why a ty...Type-2 fuzzy controllers have been mostly viewed as black-box function generators. Revealing the analytical structure of any type-2 fuzzy controller is important as it will deepen our understanding of how and why a type-2 fuzzy controller functions and lay a foundation for more rigorous system analysis and design. In this study, we derive and analyze the analytical structure of an interval type-2 fuzzy controller that uses the following identical elements: two nonlinear interval type-2 input fuzzy sets for each variable, four interval type-2 singleton output fuzzy sets, a Zadeh AND operator, and the Karnik-Mendel type reducer. Through dividing the input space of the interval type-2 fuzzy controller into 15 partitions, the input-output relationship for each local region is derived. Our derivation shows explicitly that the controller is approximately equivalent to a nonlinear proportional integral or proportional differential controller with variable gains. Furthermore, by comparing with the analytical structure of its type-1 counterpart, potential advantages of the interval type-2 fuzzy controller are analyzed. Finally, the reliability of the analysis results and the effectiveness of the interval type-2 fuzzy controller are verified by a simulation and an experiment.展开更多
文摘Abstract We identify R^7 as the pure imaginary part of octonions. Then the multiplication in octonions gives a natural almost complex structure for the unit sphere S^6. It is known that a cone over a surface M in S^6 is an associative submanifold of R^7 if and only if M is almost complex in S^6. In this paper, we show that the Gauss-Codazzi equation for almost complex curves in S^6 are the equation for primitive maps associated to the 6-symmetric space G2/T^2, and use this to explain some of the known results. Moreover, the equation for S^1-symmetric almost complex curves in S^6 is the periodic Toda lattice, and a discussion of periodic solutions is given.
基金supported by the Xinjiang Astronomical Observatory,China(No.2014KL012)the Major State Basic Research Development Program of China(No.2015CB857100)+1 种基金the National Natural Science Foundation of China(Nos.51490660 and 51405362)the Fundamental Research Funds for the Central Universities,China(No.SPSY021401)
文摘Type-2 fuzzy controllers have been mostly viewed as black-box function generators. Revealing the analytical structure of any type-2 fuzzy controller is important as it will deepen our understanding of how and why a type-2 fuzzy controller functions and lay a foundation for more rigorous system analysis and design. In this study, we derive and analyze the analytical structure of an interval type-2 fuzzy controller that uses the following identical elements: two nonlinear interval type-2 input fuzzy sets for each variable, four interval type-2 singleton output fuzzy sets, a Zadeh AND operator, and the Karnik-Mendel type reducer. Through dividing the input space of the interval type-2 fuzzy controller into 15 partitions, the input-output relationship for each local region is derived. Our derivation shows explicitly that the controller is approximately equivalent to a nonlinear proportional integral or proportional differential controller with variable gains. Furthermore, by comparing with the analytical structure of its type-1 counterpart, potential advantages of the interval type-2 fuzzy controller are analyzed. Finally, the reliability of the analysis results and the effectiveness of the interval type-2 fuzzy controller are verified by a simulation and an experiment.