期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于不同深度学习架构建立结肠镜质量控制的人工智能辅助系统
1
作者
陈健
张子豪
+3 位作者
王甘红
王珍妮
夏开建
徐晓丹
《中国医学物理学杂志》
CSCD
2024年第11期1443-1452,共10页
目的:利用不同深度学习架构模型构建结肠镜质量控制的深度学习模型,并深入探索其决策机制。方法:基于HyperKvasir和苏州大学附属常熟医院的数据集,筛选结肠镜图像,涵盖不同清洁度的肠道、息肉及盲肠。图像经过预处理和增强后,采用基于...
目的:利用不同深度学习架构模型构建结肠镜质量控制的深度学习模型,并深入探索其决策机制。方法:基于HyperKvasir和苏州大学附属常熟医院的数据集,筛选结肠镜图像,涵盖不同清洁度的肠道、息肉及盲肠。图像经过预处理和增强后,采用基于卷积神经网络(CNN)和Transformer的预训练模型进行迁移学习。模型训练采用交叉熵损失函数,使用Adam优化器,并实施学习率调度。为提高模型透明度,进行深入的可解释性分析,包括梯度加权分类激活映射、指导式梯度加权分类激活映射和沙普利加性解释等技术。最后,模型被转换为开放神经网络交换格式(ONNX)并部署到多种设备终端,以实现结肠镜质量的实时控制。结果:在3831张结肠内窥镜图像中,EfficientNet模型在测试集上表现最佳,准确率达到0.992,超过其他CNN(DenseNet121、ResNet50、VGG19)和Transformer(ViT、Swin、CvT)架构模型,其精确率、召回率和F1值分别为0.991、0.989和0.990。在358张外部测试集图像上,EfficientNet模型的平均AUC、精确率和召回率分别为0.996、0.948和0.952。尽管模型整体表现出色,但仍存在一些误判情况。模型可解释性分析揭示其决策中所依赖的图像区域。此外,模型已成功转换为ONNX格式并在多种平台和设备上部署,实现每秒超过60帧的平均推理速度,确保结肠镜检查的实时质量控制。结论:本研究为结肠镜质量控制开发7种基于CNN与Transformer的模型,EfficientNet在各类别中展现出卓越性能,并已在多终端实现实时预测,为患者提供更高水平的医疗服务。
展开更多
关键词
深度学习
TRANSFORMER
结肠镜质量控制
结肠镜
模型部署
下载PDF
职称材料
题名
基于不同深度学习架构建立结肠镜质量控制的人工智能辅助系统
1
作者
陈健
张子豪
王甘红
王珍妮
夏开建
徐晓丹
机构
常熟市第一人民医院/苏州大学附属常熟医院消化内科
上海豪兄教育科技有限公司
常熟市中医院消化内科
常熟市医学人工智能与大数据重点实验室
出处
《中国医学物理学杂志》
CSCD
2024年第11期1443-1452,共10页
基金
苏州市科技发展计划(临床试验机构能力提升)项目(SLT2023006)
常熟市医学人工智能与大数据重点实验室能力提升项目(CYZ202301)
+1 种基金
常熟市科技发展计划项目(CS202019,CSWS202316)
常熟市科技计划(社会发展)项目(CS202452)。
文摘
目的:利用不同深度学习架构模型构建结肠镜质量控制的深度学习模型,并深入探索其决策机制。方法:基于HyperKvasir和苏州大学附属常熟医院的数据集,筛选结肠镜图像,涵盖不同清洁度的肠道、息肉及盲肠。图像经过预处理和增强后,采用基于卷积神经网络(CNN)和Transformer的预训练模型进行迁移学习。模型训练采用交叉熵损失函数,使用Adam优化器,并实施学习率调度。为提高模型透明度,进行深入的可解释性分析,包括梯度加权分类激活映射、指导式梯度加权分类激活映射和沙普利加性解释等技术。最后,模型被转换为开放神经网络交换格式(ONNX)并部署到多种设备终端,以实现结肠镜质量的实时控制。结果:在3831张结肠内窥镜图像中,EfficientNet模型在测试集上表现最佳,准确率达到0.992,超过其他CNN(DenseNet121、ResNet50、VGG19)和Transformer(ViT、Swin、CvT)架构模型,其精确率、召回率和F1值分别为0.991、0.989和0.990。在358张外部测试集图像上,EfficientNet模型的平均AUC、精确率和召回率分别为0.996、0.948和0.952。尽管模型整体表现出色,但仍存在一些误判情况。模型可解释性分析揭示其决策中所依赖的图像区域。此外,模型已成功转换为ONNX格式并在多种平台和设备上部署,实现每秒超过60帧的平均推理速度,确保结肠镜检查的实时质量控制。结论:本研究为结肠镜质量控制开发7种基于CNN与Transformer的模型,EfficientNet在各类别中展现出卓越性能,并已在多终端实现实时预测,为患者提供更高水平的医疗服务。
关键词
深度学习
TRANSFORMER
结肠镜质量控制
结肠镜
模型部署
Keywords
deep learning
Transformer
colonoscopy quality control
colonoscopy
model deployment
分类号
R574.6 [医药卫生—消化系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于不同深度学习架构建立结肠镜质量控制的人工智能辅助系统
陈健
张子豪
王甘红
王珍妮
夏开建
徐晓丹
《中国医学物理学杂志》
CSCD
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部