期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
护理干预在门诊结肠镜检查前肠道清洁应用的效果分析 被引量:5
1
作者 鞠春燕 王红 《中国民间疗法》 2016年第2期88-89,共2页
结肠镜检查是诊断结肠疾病重要的方法,随着人们对健康的要求越来越高,结肠镜检查的接受率也越来也高。结肠镜检查前肠道准备的清洁度直接影响结肠镜检查的结果。有报道肠道准备不充分而遗漏扁平腺瘤的发生率高达27%^([1]),甚至因粪便... 结肠镜检查是诊断结肠疾病重要的方法,随着人们对健康的要求越来越高,结肠镜检查的接受率也越来也高。结肠镜检查前肠道准备的清洁度直接影响结肠镜检查的结果。有报道肠道准备不充分而遗漏扁平腺瘤的发生率高达27%^([1]),甚至因粪便污染镜面,影响内镜进镜和观察,也是内镜常见漏诊和失败的原因。 展开更多
关键词 结肠镜检查 肠道准备 护理干预 粪便污染 接受率 结肠面 结肠疾病 干预组 口服甘露醇 护理结果
下载PDF
结肠气钡双对比造影的体会 被引量:1
2
作者 何志英 《影像诊断与介入放射学》 1994年第3期197-198,共2页
我院近四年来对结肠钡剂检查采用气钡双对比造影法,共做85例,有病变26例(占30%)。现将我们的体会作下小结:
关键词 结肠气钡双对比 双对比造影 钡剂检查 息肉型 假息肉 双边征 结肠粘膜 点片 半月征 环堤
下载PDF
Automatic anatomical classification of colonoscopic images using deep convolutional neural networks
3
作者 Hiroaki Saito Tetsuya Tanimoto +7 位作者 Tsuyoshi Ozawa Soichiro Ishihara Mitsuhiro Fujishiro Satoki Shichijo Dai Hirasawa Tomoki Matsuda Yuma Endo Tomohiro Tada 《Gastroenterology Report》 SCIE EI 2021年第3期226-233,I0002,共9页
Background:A colonoscopy can detect colorectal diseases,including cancers,polyps,and inflammatory bowel diseases.A computer-aided diagnosis(CAD)system using deep convolutional neural networks(CNNs)that can recognize a... Background:A colonoscopy can detect colorectal diseases,including cancers,polyps,and inflammatory bowel diseases.A computer-aided diagnosis(CAD)system using deep convolutional neural networks(CNNs)that can recognize anatomical locations during a colonoscopy could efficiently assist practitioners.We aimed to construct a CAD system using a CNN to distinguish colorectal images from parts of the cecum,ascending colon,transverse colon,descending colon,sigmoid colon,and rectum.Method:We constructed a CNN by training of 9,995 colonoscopy images and tested its performance by 5,121 independent colonoscopy images that were categorized according to seven anatomical locations:the terminal ileum,the cecum,ascending colon to transverse colon,descending colon to sigmoid colon,the rectum,the anus,and indistinguishable parts.We examined images taken during total colonoscopy performed between January 2017 and November 2017 at a single center.We evaluated the concordance between the diagnosis by endoscopists and those by the CNN.The main outcomes of the study were the sensitivity and specificity of the CNN for the anatomical categorization of colonoscopy images.Results:The constructed CNN recognized anatomical locations of colonoscopy images with the following areas under the curves:0.979 for the terminal ileum;0.940 for the cecum;0.875 for ascending colon to transverse colon;0.846 for descending colon to sigmoid colon;0.835 for the rectum;and 0.992 for the anus.During the test process,the CNN system correctly recognized 66.6%of images.Conclusion:We constructed the new CNN system with clinically relevant performance for recognizing anatomical locations of colonoscopy images,which is the first step in constructing a CAD system that will support us during colonoscopy and provide an assurance of the quality of the colonoscopy procedure. 展开更多
关键词 COLONOSCOPY deep learning ENDOSCOPY neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部