[Objective] This study aimed to explore the capsule development at differ-ent positions of sesame (Sesamum indicum). [Method] The number of flowers and capsules at lower part (below the 8th node from the bottom), ...[Objective] This study aimed to explore the capsule development at differ-ent positions of sesame (Sesamum indicum). [Method] The number of flowers and capsules at lower part (below the 8th node from the bottom), middle part (at 9th-20th nodes from the bottom) and upper part (above the 20th node) of sesame plants (Zhengzhi 98N09) was counted. The length, width, fresh weight of the capsules, fresh and dry weight of the seeds, and the dry weight of the capsule shel s at dif-ferent growth stages were measured. [Result] From the bottom to the top of sesame plants, the numbers of flowers and capsules at each node showed a trend of first increasing and then decreasing. The 15th and the 12th node had the maxi-mum flower number (9.3 flowers per node on average) and the maximum capsule number (4.2 capsules per node on average), respectively. The middle nodes had the highest capsule setting rate, up to 45.1%, fol owed by that at upper nodes, 30.1%, and the capsule setting rate at lower nodes was the smal est, only 25.0%. The capsule length, width, fresh weight, seed fresh weight, dry weight and capsule shel dry weight at middle part were higher than that at lower and upper part. Moreover, grain fil ing rates of the lower, middle and upper capsules were 0.003 5, 0.004 4 and 0.003 0 g/(capsule·d). It suggests that the substances gave priority to supply the middle capsules during the development of capsules. [Conclusion] This study wil provide theoretical basis for the cultivation of high-yielding sesame.展开更多
基金Supported by Earmarked Fund for China Agriculture Research System(CAES-15)Science and Technology Cooperation Project of Henan Province and Chinese Academy of Sciences(112106000023)~~
文摘[Objective] This study aimed to explore the capsule development at differ-ent positions of sesame (Sesamum indicum). [Method] The number of flowers and capsules at lower part (below the 8th node from the bottom), middle part (at 9th-20th nodes from the bottom) and upper part (above the 20th node) of sesame plants (Zhengzhi 98N09) was counted. The length, width, fresh weight of the capsules, fresh and dry weight of the seeds, and the dry weight of the capsule shel s at dif-ferent growth stages were measured. [Result] From the bottom to the top of sesame plants, the numbers of flowers and capsules at each node showed a trend of first increasing and then decreasing. The 15th and the 12th node had the maxi-mum flower number (9.3 flowers per node on average) and the maximum capsule number (4.2 capsules per node on average), respectively. The middle nodes had the highest capsule setting rate, up to 45.1%, fol owed by that at upper nodes, 30.1%, and the capsule setting rate at lower nodes was the smal est, only 25.0%. The capsule length, width, fresh weight, seed fresh weight, dry weight and capsule shel dry weight at middle part were higher than that at lower and upper part. Moreover, grain fil ing rates of the lower, middle and upper capsules were 0.003 5, 0.004 4 and 0.003 0 g/(capsule·d). It suggests that the substances gave priority to supply the middle capsules during the development of capsules. [Conclusion] This study wil provide theoretical basis for the cultivation of high-yielding sesame.