In this paper, equivalent circuits for high frequency multi-winding magnetic components are derived from finite element (FE) computations. Lumped parameter models are first presented, based on previously published w...In this paper, equivalent circuits for high frequency multi-winding magnetic components are derived from finite element (FE) computations. Lumped parameter models are first presented, based on previously published work. All parameters of these circuits can be interpreted as the results of open and short-circuit tests on the transformer. Based on this consideration, numerical procedures are then proposed to derive frequency-dependent lumped parameters from FE simulations. By using an adequate formulation, parameters are directly obtained from the FE model degrees of freedom, without performing any volume integration in post-processing, which can be source of numerical errors. In this contribution, attention is paid on the modeling of magnetic coupling using inductances, and dissipative effects (winding and core losses) using resistances. The impact of conductor eddy currents on the circuit parameters is moreover studied in details. Instead of an analysis of the impact conductor eddy currents may have on the circuit parameters is moreover carried through.展开更多
In the period 2003-2011, lightning over-voltages accounted for about 47% of the total number of distribution transformer failures observed in the service area ofAES Sul, a power company that operates in the state of R...In the period 2003-2011, lightning over-voltages accounted for about 47% of the total number of distribution transformer failures observed in the service area ofAES Sul, a power company that operates in the state of Rio Grande doSul, in South Brazil. This paper presents the results of an investigation on the influence of the distance between transformer and MV arresters on the surges at the transformer windings caused by direct strikes to the MV network. The analysis, performed through simulations using the Alternative Transients Program, shows that in general higher voltages are produced by subsequent strokes. Although in relation to the primary side the surges transferred to the secondary are much less affected by the distance between transformers and primary arresters, such distance should always be kept as short as possible in order to reduce the probability of occurrence of transformer failures due to over-voltages at the MV bushings.展开更多
Computer programs have definitely become indispensable for designing power transformer. Among several applications, computer programs are mostly used for electric field calculation and thus electrical insulation conce...Computer programs have definitely become indispensable for designing power transformer. Among several applications, computer programs are mostly used for electric field calculation and thus electrical insulation concerns. In consequence, studies based on analytical approach to basic studies of correlated problems have become even more important because they form the very basis of knowledge that is necessary to every transformer designer in view of taking all the advantages of computational analyses. On the other hand, one of the most important basic studies consists in the evaluation of voltage surge distribution along transformer windings for which the method of separation of variables has been extensively used thanks to some simplifying assumptions. With this aim, authors have developed and previously published works that show the applicability of an alternative and useful analytical method that is the method of the residues, which requires no simplification to be assumed. In this work, another important step is taken towards proofing the total applicability of this promising method that is through a practical problem. A comparison to the numerical method TLM (transmission line method) is also performed and concordance with TLM and experimental data confirms the proposal of the method of residues can be also applicable to several others problems of electromagnetism.展开更多
This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield...This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.展开更多
文摘In this paper, equivalent circuits for high frequency multi-winding magnetic components are derived from finite element (FE) computations. Lumped parameter models are first presented, based on previously published work. All parameters of these circuits can be interpreted as the results of open and short-circuit tests on the transformer. Based on this consideration, numerical procedures are then proposed to derive frequency-dependent lumped parameters from FE simulations. By using an adequate formulation, parameters are directly obtained from the FE model degrees of freedom, without performing any volume integration in post-processing, which can be source of numerical errors. In this contribution, attention is paid on the modeling of magnetic coupling using inductances, and dissipative effects (winding and core losses) using resistances. The impact of conductor eddy currents on the circuit parameters is moreover studied in details. Instead of an analysis of the impact conductor eddy currents may have on the circuit parameters is moreover carried through.
文摘In the period 2003-2011, lightning over-voltages accounted for about 47% of the total number of distribution transformer failures observed in the service area ofAES Sul, a power company that operates in the state of Rio Grande doSul, in South Brazil. This paper presents the results of an investigation on the influence of the distance between transformer and MV arresters on the surges at the transformer windings caused by direct strikes to the MV network. The analysis, performed through simulations using the Alternative Transients Program, shows that in general higher voltages are produced by subsequent strokes. Although in relation to the primary side the surges transferred to the secondary are much less affected by the distance between transformers and primary arresters, such distance should always be kept as short as possible in order to reduce the probability of occurrence of transformer failures due to over-voltages at the MV bushings.
文摘Computer programs have definitely become indispensable for designing power transformer. Among several applications, computer programs are mostly used for electric field calculation and thus electrical insulation concerns. In consequence, studies based on analytical approach to basic studies of correlated problems have become even more important because they form the very basis of knowledge that is necessary to every transformer designer in view of taking all the advantages of computational analyses. On the other hand, one of the most important basic studies consists in the evaluation of voltage surge distribution along transformer windings for which the method of separation of variables has been extensively used thanks to some simplifying assumptions. With this aim, authors have developed and previously published works that show the applicability of an alternative and useful analytical method that is the method of the residues, which requires no simplification to be assumed. In this work, another important step is taken towards proofing the total applicability of this promising method that is through a practical problem. A comparison to the numerical method TLM (transmission line method) is also performed and concordance with TLM and experimental data confirms the proposal of the method of residues can be also applicable to several others problems of electromagnetism.
文摘This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.