In order to diminish the impacts of extemal disturbance such as parking speed fluctuation and model un- certainty existing in steering kinematics, this paper presents a parallel path tracking method for vehicle based ...In order to diminish the impacts of extemal disturbance such as parking speed fluctuation and model un- certainty existing in steering kinematics, this paper presents a parallel path tracking method for vehicle based on pre- view back propagation (BP) neural network PID controller. The forward BP neural network can adjust the parameters of PID controller in real time. The preview time is optimized by considering path curvature, change in curvature and road boundaries. A fuzzy controller considering barriers and different road conditions is built to select the starting po- sition. In addition, a kind of path planning technology satisfying the requirement of obstacle avoidance is introduced. In order to solve the problem of discontinuous curvature, cubic B spline curve is used for curve fitting. The simulation results and real vehicle tests validate the effectiveness of the proposed path planning and tracking methods.展开更多
By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power pla...By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power plant is put forward. This scheme can effectively overcome the large time delay, inertia of the export steam and the influencee of object in varying operational parameters. Thus excellent control quality is obtaitud. The present paper describes the development and application of neural network based controller to control the temperature of the boiler's export steam. Through simulation in various situations, it validates that the control quality of this control system is apparently superior to the conventional PID control system.展开更多
A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established vi...A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton-Euler formalism.For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field.Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.展开更多
Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound co...Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment,the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness,and thus this compound control can be used as a new control strategy for the digital valve control servo system.展开更多
In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanica...In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanical control system, tension control of casting machine are the main factors that influence the production quality. Analyzed the reason and the tension control mathematical model generation casting machine tension in the BOPP production line, for the constant tension control of casting machine, put forward a kind of improved PID control method based on RBF neural network. By the method of Jacobian information identification of RBF neural network, combined with the incremental PID algorithm to realize the self-tuning tension control parameters, control simulation and implementation of the model using Matlab software programming. The simulation results show that, the improved algorithm has better control effect than the general PID.展开更多
In order to design an effective hydraulic motor speed control system, Matlab_Simiulink and AMESim co-simulation technology is adopted to establish more accurate model and reflect the actual system. The neural...In order to design an effective hydraulic motor speed control system, Matlab_Simiulink and AMESim co-simulation technology is adopted to establish more accurate model and reflect the actual system. The neural network proportion-integration-differentiation (PID) control parameters on-line adjustment is utilized to improve system accuracy, celerity and stability. Simulation results indicate that with the control system proposed in this paper, the system deviation is reduced, therefore accuracy is improved; response speed for step signal and sinusoidal signal gets faster, thus acceleration is rapidly improved; and the system can be restored to the control value in case of interfering, so stability is improved.展开更多
An intelligent shearer height adjusting system is a key technology for mining at a man-less working face. A control strategy for a shearer height adjusting system based on a mathematical model of the height adjusting ...An intelligent shearer height adjusting system is a key technology for mining at a man-less working face. A control strategy for a shearer height adjusting system based on a mathematical model of the height adjusting mechanism is proposed. It considers the non-linearity and time variations in the control process and uses Dynamic Fuzzy Neural Networks (D-FNN). The inverse characteristics of the system are studied. An adaptive on-line learning and error compensation mechanism guarantees sys- tem real-time performance and reliability. Parameters from a German Eickhoff SL500 shearer were used with Maflab/Simulink to simulate a height adjusting control system. Simulation shows that the trace error of a D-FNN controller is smaller than that of a PID controller. Also, the D-FNN control scheme has good generalization and tracking performance, which allow it to satisfy the needs of a shearer height adjusting system.展开更多
A nonlinear proportional-integral-derivative (PID) controller is constructed based on recurrent neural networks. In the control process of nonlinear multivariable systems, several nonlinear PID controllers have been a...A nonlinear proportional-integral-derivative (PID) controller is constructed based on recurrent neural networks. In the control process of nonlinear multivariable systems, several nonlinear PID controllers have been adopted in parallel. Under the decoupling cost function, a decoupling control strategy is proposed. Then the stability condition of the controller is presented based on the Lyapunov theory. Simulation examples are given to show effectiveness of the proposed decoupling control.展开更多
The fuzzy NN predictive control algorithm introduced in this paper uses fuzzy neural network to model the nonlinear MIMO process. Its training method that integrates LS and BP algorithm brings quick convergence. GPC a...The fuzzy NN predictive control algorithm introduced in this paper uses fuzzy neural network to model the nonlinear MIMO process. Its training method that integrates LS and BP algorithm brings quick convergence. GPC algorithm is used as the predictive component. The fuzzy neural network has six layers, including input layer, output layer and four hidden layers. An application to a MIMO nonlinear process(green liquor system of the recovery system in a pulp factory shows that this algorithm has better performance than normal PID algrithm.展开更多
The control system determines the effectiveness of an underwater hydraulic shock shovel. This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems. A n...The control system determines the effectiveness of an underwater hydraulic shock shovel. This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems. A new type of control system’s mathematical model was built and analyzed according to those principles. Since the initial control system’s response time could not fulfill the design requirements, a PID controller was added to the control system. System response time was still slower than required, so a neural network was added to nonlinearly regulate the proportional element, integral element and derivative element coefficients of the PID controller. After these improvements to the control system, system parameters fulfilled the design requirements. The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can’t satisfy a shovel’s requirements, so advanced and normal control methods were combined to improve the control system, bringing good results.展开更多
基金Supported by the National Natural Science Foundation of China(No.11072106,No.51005133 and No.51375009)
文摘In order to diminish the impacts of extemal disturbance such as parking speed fluctuation and model un- certainty existing in steering kinematics, this paper presents a parallel path tracking method for vehicle based on pre- view back propagation (BP) neural network PID controller. The forward BP neural network can adjust the parameters of PID controller in real time. The preview time is optimized by considering path curvature, change in curvature and road boundaries. A fuzzy controller considering barriers and different road conditions is built to select the starting po- sition. In addition, a kind of path planning technology satisfying the requirement of obstacle avoidance is introduced. In order to solve the problem of discontinuous curvature, cubic B spline curve is used for curve fitting. The simulation results and real vehicle tests validate the effectiveness of the proposed path planning and tracking methods.
基金supported by the project of "SDUST Qunxing Program"(No.qx0902075)
文摘By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power plant is put forward. This scheme can effectively overcome the large time delay, inertia of the export steam and the influencee of object in varying operational parameters. Thus excellent control quality is obtaitud. The present paper describes the development and application of neural network based controller to control the temperature of the boiler's export steam. Through simulation in various situations, it validates that the control quality of this control system is apparently superior to the conventional PID control system.
基金Project(2011ZA51001)supported by National Aerospace Science Foundation of China
文摘A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton-Euler formalism.For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field.Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.
基金Supported by the National Natural Science Foundation of China(No.51505412)the Independent Study Program for Young Teachers in Yanshan University(No.14LGB004)
文摘Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment,the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness,and thus this compound control can be used as a new control strategy for the digital valve control servo system.
文摘In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanical control system, tension control of casting machine are the main factors that influence the production quality. Analyzed the reason and the tension control mathematical model generation casting machine tension in the BOPP production line, for the constant tension control of casting machine, put forward a kind of improved PID control method based on RBF neural network. By the method of Jacobian information identification of RBF neural network, combined with the incremental PID algorithm to realize the self-tuning tension control parameters, control simulation and implementation of the model using Matlab software programming. The simulation results show that, the improved algorithm has better control effect than the general PID.
文摘In order to design an effective hydraulic motor speed control system, Matlab_Simiulink and AMESim co-simulation technology is adopted to establish more accurate model and reflect the actual system. The neural network proportion-integration-differentiation (PID) control parameters on-line adjustment is utilized to improve system accuracy, celerity and stability. Simulation results indicate that with the control system proposed in this paper, the system deviation is reduced, therefore accuracy is improved; response speed for step signal and sinusoidal signal gets faster, thus acceleration is rapidly improved; and the system can be restored to the control value in case of interfering, so stability is improved.
基金support for this work, provided by the National High Technology Research and Development Program of China (No2008AA062202)China University of Mining & Technology Scaling Program
文摘An intelligent shearer height adjusting system is a key technology for mining at a man-less working face. A control strategy for a shearer height adjusting system based on a mathematical model of the height adjusting mechanism is proposed. It considers the non-linearity and time variations in the control process and uses Dynamic Fuzzy Neural Networks (D-FNN). The inverse characteristics of the system are studied. An adaptive on-line learning and error compensation mechanism guarantees sys- tem real-time performance and reliability. Parameters from a German Eickhoff SL500 shearer were used with Maflab/Simulink to simulate a height adjusting control system. Simulation shows that the trace error of a D-FNN controller is smaller than that of a PID controller. Also, the D-FNN control scheme has good generalization and tracking performance, which allow it to satisfy the needs of a shearer height adjusting system.
文摘A nonlinear proportional-integral-derivative (PID) controller is constructed based on recurrent neural networks. In the control process of nonlinear multivariable systems, several nonlinear PID controllers have been adopted in parallel. Under the decoupling cost function, a decoupling control strategy is proposed. Then the stability condition of the controller is presented based on the Lyapunov theory. Simulation examples are given to show effectiveness of the proposed decoupling control.
文摘The fuzzy NN predictive control algorithm introduced in this paper uses fuzzy neural network to model the nonlinear MIMO process. Its training method that integrates LS and BP algorithm brings quick convergence. GPC algorithm is used as the predictive component. The fuzzy neural network has six layers, including input layer, output layer and four hidden layers. An application to a MIMO nonlinear process(green liquor system of the recovery system in a pulp factory shows that this algorithm has better performance than normal PID algrithm.
基金the 863 Program Item of Hi-tech Research and Development Program of China Foundation under Grant No.2002AA602012-1Harbin Engineering University Foundation under Grant No. HEUFT05071the Research Fund for the Doctoral Program of Higher Education under Grant No.20070217016.
文摘The control system determines the effectiveness of an underwater hydraulic shock shovel. This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems. A new type of control system’s mathematical model was built and analyzed according to those principles. Since the initial control system’s response time could not fulfill the design requirements, a PID controller was added to the control system. System response time was still slower than required, so a neural network was added to nonlinearly regulate the proportional element, integral element and derivative element coefficients of the PID controller. After these improvements to the control system, system parameters fulfilled the design requirements. The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can’t satisfy a shovel’s requirements, so advanced and normal control methods were combined to improve the control system, bringing good results.