为了进一步提高在α稳定分布噪声背景下非线性自适应滤波算法的收敛速度,本文提出了一种新的基于p范数的核最小对数绝对差自适应滤波算法(kernel least logarithm absolute difference algorithm based on p-norm,P-KLLAD).该算法结合...为了进一步提高在α稳定分布噪声背景下非线性自适应滤波算法的收敛速度,本文提出了一种新的基于p范数的核最小对数绝对差自适应滤波算法(kernel least logarithm absolute difference algorithm based on p-norm,P-KLLAD).该算法结合核最小对数绝对差算法和p范数,一方面利用最小对数绝对差准则保证了算法在α稳定分布噪声环境下良好的鲁棒性,另一方面在误差的绝对值上添加p范数,通过p范数和一个正常数a来控制算法的陡峭程度,从而提高该算法的收敛速度.在非线性系统辨识和Mackey-Glass混沌时间序列预测的仿真结果表明,本文算法在保证鲁棒性能的同时提高了收敛速度,并且在收敛速度和鲁棒性方面优于核最小均方误差算法、核分式低次幂算法、核最小对数绝对差算法和核最小平均p范数算法.展开更多
文摘为了进一步提高在α稳定分布噪声背景下非线性自适应滤波算法的收敛速度,本文提出了一种新的基于p范数的核最小对数绝对差自适应滤波算法(kernel least logarithm absolute difference algorithm based on p-norm,P-KLLAD).该算法结合核最小对数绝对差算法和p范数,一方面利用最小对数绝对差准则保证了算法在α稳定分布噪声环境下良好的鲁棒性,另一方面在误差的绝对值上添加p范数,通过p范数和一个正常数a来控制算法的陡峭程度,从而提高该算法的收敛速度.在非线性系统辨识和Mackey-Glass混沌时间序列预测的仿真结果表明,本文算法在保证鲁棒性能的同时提高了收敛速度,并且在收敛速度和鲁棒性方面优于核最小均方误差算法、核分式低次幂算法、核最小对数绝对差算法和核最小平均p范数算法.