针对行人检测中利用方向梯度直方图(Histogram of Oriented Gradient,HOG)特征进行训练时耗时长,检测速度慢的问题,提出一种改良算法。该算法结合相位一致性(phase congruency,PC),利用局部能量与Log-Gabor滤波器,计算提取行人正样本图...针对行人检测中利用方向梯度直方图(Histogram of Oriented Gradient,HOG)特征进行训练时耗时长,检测速度慢的问题,提出一种改良算法。该算法结合相位一致性(phase congruency,PC),利用局部能量与Log-Gabor滤波器,计算提取行人正样本图像的边缘,以边缘像素点处的局部能量值最大值与对应的相位值做为特征,以HOG滑动块形式生成特征描述子,此文称之为PC-HOG特征,利用AdaBoost级联分类器算法训练学习此特征,并在INRIA数据库中测试此算法分类效果。测试结果表明该算法明显减少了训练时间,提升了行人检测速度,较HOG+SVM速度提升40%以上,较HOG+AdaBoost提高了8%左右,也改善了检测准确性。展开更多
文摘针对行人检测中利用方向梯度直方图(Histogram of Oriented Gradient,HOG)特征进行训练时耗时长,检测速度慢的问题,提出一种改良算法。该算法结合相位一致性(phase congruency,PC),利用局部能量与Log-Gabor滤波器,计算提取行人正样本图像的边缘,以边缘像素点处的局部能量值最大值与对应的相位值做为特征,以HOG滑动块形式生成特征描述子,此文称之为PC-HOG特征,利用AdaBoost级联分类器算法训练学习此特征,并在INRIA数据库中测试此算法分类效果。测试结果表明该算法明显减少了训练时间,提升了行人检测速度,较HOG+SVM速度提升40%以上,较HOG+AdaBoost提高了8%左右,也改善了检测准确性。