家居机器人技术一般应用视觉同步定位与建图(SLAM,Simultaneous Localization and Mapping)来实现定位与构建导航地图,如何实现视觉SLAM系统快速准确定位和构建丰富环境信息的地图已经成为视觉SLAM研究的热点问题。本文将光流法与关键...家居机器人技术一般应用视觉同步定位与建图(SLAM,Simultaneous Localization and Mapping)来实现定位与构建导航地图,如何实现视觉SLAM系统快速准确定位和构建丰富环境信息的地图已经成为视觉SLAM研究的热点问题。本文将光流法与关键点结合,加快视觉SLAM的数据处理速度,并添加稠密点云地图和八叉树地图构建线程来获取环境信息,实现一个较为优秀的视觉SLAM系统。在公开数据集上进行的定位实验表明,该视觉SLAM系统在绝对轨迹误差和相对位姿误差上与ORB-SLAM2系统保持基本一致,并且在其中几项数据中具有更小的误差结果,整体系统对图像的处理速度约为40 FPS(Frames Per Second),是ORB-SLAM2系统的1.4倍左右,说明该系统在提高系统速度的基础上保持了较高的准确度。展开更多
文摘家居机器人技术一般应用视觉同步定位与建图(SLAM,Simultaneous Localization and Mapping)来实现定位与构建导航地图,如何实现视觉SLAM系统快速准确定位和构建丰富环境信息的地图已经成为视觉SLAM研究的热点问题。本文将光流法与关键点结合,加快视觉SLAM的数据处理速度,并添加稠密点云地图和八叉树地图构建线程来获取环境信息,实现一个较为优秀的视觉SLAM系统。在公开数据集上进行的定位实验表明,该视觉SLAM系统在绝对轨迹误差和相对位姿误差上与ORB-SLAM2系统保持基本一致,并且在其中几项数据中具有更小的误差结果,整体系统对图像的处理速度约为40 FPS(Frames Per Second),是ORB-SLAM2系统的1.4倍左右,说明该系统在提高系统速度的基础上保持了较高的准确度。