期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
绝热层流泡状流运动的双流体模型 被引量:2
1
作者 宋蔷 罗锐 +1 位作者 杨献勇 王洲 《化工学报》 EI CAS CSCD 北大核心 2001年第10期902-906,共5页
绝热层流泡状流是泡状流研究中的一个基础范例 .目前描述绝热层流泡状流常采用的双流体模型由于相间作用考虑欠缺而适用性差 .本文结合理论和实验研究结果导出了描述壁面“排斥”作用的表达式 ,并建立了一个封闭的双流体模型 .模型预测... 绝热层流泡状流是泡状流研究中的一个基础范例 .目前描述绝热层流泡状流常采用的双流体模型由于相间作用考虑欠缺而适用性差 .本文结合理论和实验研究结果导出了描述壁面“排斥”作用的表达式 ,并建立了一个封闭的双流体模型 .模型预测值和实验值的比较表明 ,由于相间作用的合理考虑 。 展开更多
关键词 绝热层流泡状流 双流体模型 空泡率 液相速度 化工流体力学
下载PDF
升潜条件下矩形窄缝通道绝热层流流动解析解
2
作者 周磊 葛超 +2 位作者 昝元锋 闫晓 陈炳德 《原子能科学技术》 EI CAS CSCD 北大核心 2015年第7期1215-1219,共5页
本文采用数学分析方法对矩形窄缝通道内绝热层流流动进行了研究。通过合理简化得到了分析对象的控制方程,基于固定流量和固定通道压降两种不同的边界条件,求解得出方程的解析解,从而可定量分析升潜条件对速度分布、压降、摩阻系数等的... 本文采用数学分析方法对矩形窄缝通道内绝热层流流动进行了研究。通过合理简化得到了分析对象的控制方程,基于固定流量和固定通道压降两种不同的边界条件,求解得出方程的解析解,从而可定量分析升潜条件对速度分布、压降、摩阻系数等的影响规律。 展开更多
关键词 升潜条件 矩形窄缝 绝热层流 解析解
下载PDF
Numerical Analysis of Explosion Characteristics of Vent Gas From 18650 LiFePO_(4) Batteries With Different States of Charge
3
作者 Shi-Lin Wang Xu Gong +5 位作者 Li-Na Liu Yi-Tong Li Chen-Yu Zhang Le-Jun Xu Xu-Ning Feng Huai-Bin Wang 《电化学(中英文)》 CAS 北大核心 2024年第8期28-35,共8页
The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion ba... The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents. 展开更多
关键词 Combustion and explosion characteristics Explosion limit Laminar flame speed Adiabatic flame temperature Sensitivity analysis
下载PDF
合成气预混层流火焰速度的热流量法测量
4
作者 梁晓晔 翁武斌 +4 位作者 王智化 朱燕群 周志军 周俊虎 岑可法 《工程热物理学报》 EI CAS CSCD 北大核心 2013年第7期1370-1374,共5页
本文基于热流量法搭建了层流火焰速度测量平台,通过测量甲烷的绝热层流火焰速度对平台的可靠性进行了验证。然后运用热流量法对15%H_2-15%CO-70%N_2和12%H_2-19%CO-13.2%CO_2-5.8%CH_4-50%N_2两种组分合成气的绝热层流火焰速度进行了精... 本文基于热流量法搭建了层流火焰速度测量平台,通过测量甲烷的绝热层流火焰速度对平台的可靠性进行了验证。然后运用热流量法对15%H_2-15%CO-70%N_2和12%H_2-19%CO-13.2%CO_2-5.8%CH_4-50%N_2两种组分合成气的绝热层流火焰速度进行了精确测量,并通过Chemkin 4.1软件采用GRI-Mech 3.0,USC MechⅡ和Davis H_2/CO三种机理对试验工况进行了计算。实验数据与计算结果基本一致,尤其与GRI-Mech 3.0机理的计算结果较好地吻合。本文还对实验误差进行了误差分析,对两种合成气的平均测量误差分别达到1.107 cm/s和0.88 cm/s。 展开更多
关键词 热流量法 合成气 绝热层流火焰速度 误差分析 当量比
原文传递
Numerical Study on the Suppression of Shock Induced Separation on the Non-Adiabatic Wall
5
作者 Doug-Bong LEE (Dept. of Mechanical Engineering, University of Inchon, 177 Dowhadong Namgu, Inchon, Korea) 《Journal of Thermal Science》 SCIE EI CAS CSCD 2000年第4期305-310,共6页
A numerical model is constructed to simulate the interaction of supersonic (M = 2.4 ) oblique shock wave / turbulent boundary layer on a strongly heated wall. The heated wall temperature is two times higher than the a... A numerical model is constructed to simulate the interaction of supersonic (M = 2.4 ) oblique shock wave / turbulent boundary layer on a strongly heated wall. The heated wall temperature is two times higher than the adiabatic wall temperature and the shock wave is strong enough to induce boundary layer separation. The turbulence model is Spalart-Allmaras model. The comparison of the wall pressure distribution with the experimental data ensures the validity of this numerical model. The effect of strong wall heating enlarges the separation region upstream and downstream. In order to eliminate the separation, wall bleeding is applied at the shock foot position. As a result of the parametric study, the best position of the bleeding slot is selected. The position of the bleeding is very important for the separation suppression. If the bleeding is applied upstream of shock foot, then separation reoccurs after the bleeding slot. If the bleeding is applied downstream of shock foot, the upstream boundary layer is little influenced and still separated. The bleeding vent width is about same as the upstream boundary layer thickness and suction mass flow is 20 to 80 % of the flow rate in the upstream boundary layer. The bleeding mass flow rate is very sensitive to the bleeding vent position if we fix the vent outlet pressure. The final configuration of the shock reflection pattern approaches to the non-viscous value when wall bleeding is applied at the shock impinging point. 展开更多
关键词 oblique shock wave turbulent boundary layer interaction heated wall SEPARATION BLEEDING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部