For converter transformer, AC-DC combined electric field can trigger space charge accumulation on oil-impregnated pressboard interface. The accumulation of space charge on oil-pressboard interface can result in electr...For converter transformer, AC-DC combined electric field can trigger space charge accumulation on oil-impregnated pressboard interface. The accumulation of space charge on oil-pressboard interface can result in electric field distortion, trend to trigger surface discharge of barriers. This paper studied the influence of surface charge on flashover voltage of oil-impregnated pressboard under AC-DC combined electric field. The study finds that the flashover voltage of oil-pressboard interface under negative polarity DC superimposed AC electric field is higher than that.of positive DC superimposed AC voltage to form composite electric field. It was found that homopolar surface charge has been accumulated on the interface of oil-pressboard with positive or negative DC voltage through measuring surface potential by the electrostatic capacitive probe. The surface charge produced electric field in the opposite direction, which weakening the synthetic electric field strength. What's more, under the same conditions, the negative surface charge density oil-pressboard is much larger than the positive.展开更多
The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification...The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification and discharge at the interface under certain condition. It is of significant importance to take an insight into the phenomenon occurring at the interface. Through experiment, the pressboard is found as a porous material. The interface changes abruptly from bulk pressboard to the bulk oil as a result of the porous structure. A new model is proposed which divides the interface into bulk oil region, transition region, and bulk pressboard region. The width of the transition region is decided according to the microtome figure. The effective permittivity of the transition region is calculated using a new model based on fractal theory. The model is validated and compared with previous calculation model. The effect of the existence of transition region on the electric field distribution is discussed.展开更多
文摘For converter transformer, AC-DC combined electric field can trigger space charge accumulation on oil-impregnated pressboard interface. The accumulation of space charge on oil-pressboard interface can result in electric field distortion, trend to trigger surface discharge of barriers. This paper studied the influence of surface charge on flashover voltage of oil-impregnated pressboard under AC-DC combined electric field. The study finds that the flashover voltage of oil-pressboard interface under negative polarity DC superimposed AC electric field is higher than that.of positive DC superimposed AC voltage to form composite electric field. It was found that homopolar surface charge has been accumulated on the interface of oil-pressboard with positive or negative DC voltage through measuring surface potential by the electrostatic capacitive probe. The surface charge produced electric field in the opposite direction, which weakening the synthetic electric field strength. What's more, under the same conditions, the negative surface charge density oil-pressboard is much larger than the positive.
基金Project(2009CB724504)supported by the National Basic Research Program of China
文摘The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification and discharge at the interface under certain condition. It is of significant importance to take an insight into the phenomenon occurring at the interface. Through experiment, the pressboard is found as a porous material. The interface changes abruptly from bulk pressboard to the bulk oil as a result of the porous structure. A new model is proposed which divides the interface into bulk oil region, transition region, and bulk pressboard region. The width of the transition region is decided according to the microtome figure. The effective permittivity of the transition region is calculated using a new model based on fractal theory. The model is validated and compared with previous calculation model. The effect of the existence of transition region on the electric field distribution is discussed.