期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
电子元件中镀Sn绝缘基体的制造
1
作者 范宏义 《材料保护》 CAS CSCD 北大核心 2003年第4期78-78,共1页
关键词 电子元件 镀锡 绝缘基体 制造 线状图案
下载PDF
ID-based Key-insulated Authenticated Key Agreement Protocol 被引量:1
2
作者 周渊 程晓明 柴震川 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第2期247-249,共3页
The basic idea behind an ID-based cryptosystem is that end user's public key can be determined by his identity information.Comparing with the traditional certificate-based cryptography,identity-based cryptography ... The basic idea behind an ID-based cryptosystem is that end user's public key can be determined by his identity information.Comparing with the traditional certificate-based cryptography,identity-based cryptography can eliminate much of the overhead associated with the deployment and management of certificate.However,exposure of private keys can be the most devastating attack on a public key based cryptosystem since such that all security guarantees are lost.In this paper,an ID-based authenticated key agreement protocol was presented.For solving the problem of key exposure of the basic scheme,the technique of key insulation was applied and a key insulated version is developed. 展开更多
关键词 ID-BASED KEY-INSULATED key agreement
下载PDF
On-chip higher-order topological micromechanical metamaterials 被引量:4
3
作者 Ying Wu Mou Yan +3 位作者 Zhi-Kang Lin Hai-Xiao Wang Feng Li Jian-Hua Jiang 《Science Bulletin》 SCIE EI CSCD 2021年第19期1959-1966,M0003,共9页
Metamaterials with higher-order topological band gaps that exhibit topological physics beyond the bulkedge correspondence provide unique application values due to their ability of integrating topological boundary stat... Metamaterials with higher-order topological band gaps that exhibit topological physics beyond the bulkedge correspondence provide unique application values due to their ability of integrating topological boundary states at multiple dimensions in a single chip.On the other hand,in the past decade,micromechanical metamaterials are developing rapidly for various applications such as micro-piezoelectricgenerators,intelligent micro-systems,on-chip sensing and self-powered micro-systems.To empower these cutting-edge applications with topological manipulations of elastic waves,higher-order topological mechanical systems working at high frequencies(MHz)with high quality-factors are demanded.The current realizations of higher-order topological mechanical systems,however,are still limited to systems with large scales(centimetres)and low frequencies(k Hz).Here,we report the first experimental realization of an on-chip micromechanical metamaterial as the higher-order topological insulator for elastic waves at MHz.The higher-order topological phononic band gap is induced by the band inversion at the Brillouin zone corner which is achieved by configuring the orientations of the elliptic pillars etched on the silicon chip.With consistent experiments,theory and simulations,we demonstrate the emergence of coexisting topological edge and corner states in a single silicon chip as induced by the higher-order band topology.The experimental realization of on-chip micromechanical metamaterials with higherorder topology opens a new regime for materials and applications based on topological elastic waves. 展开更多
关键词 Higher-order band topology Micromechanical metamaterials On-chip devices Mechanical waves
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部