In order to charge batteries and supply all the electrical devices like wheel-motors used in a heavy-duty hybrid electric vehicle, a solution consists in using an assembly permanent magnet generator driven by a diesel...In order to charge batteries and supply all the electrical devices like wheel-motors used in a heavy-duty hybrid electric vehicle, a solution consists in using an assembly permanent magnet generator driven by a diesel engine and a three-phase insulated gate bipolar transistor/diodes bridge controlled rectifier connected to the battery. In this work, hysteresis current control strategies combined with a judicious current sensing mode for the assembly permanent magnet synchronous machine-controlled rectifier are investigated. Main issues first concern the different kinds of transistors switching modes allowed by the proposed current sensing mode when the machine operates either as a generator or as a motor. Second, the modulated hysteresis method is presented, which merges the performances of robustness and dynamic of the classical hysteresis method and imposes the switching frequency alike pulsewidth modulation techniques. A test bench at reduced power permits to test the switching modes as well as classical and modulated hysteresis methods for both motor and generator operating modes and to validate the simulation predictions. The digital signal processor algorithm elaborated for the control strategy is flexible and adaptable to all kinds of transistor switchings and machine operating modes.展开更多
文摘In order to charge batteries and supply all the electrical devices like wheel-motors used in a heavy-duty hybrid electric vehicle, a solution consists in using an assembly permanent magnet generator driven by a diesel engine and a three-phase insulated gate bipolar transistor/diodes bridge controlled rectifier connected to the battery. In this work, hysteresis current control strategies combined with a judicious current sensing mode for the assembly permanent magnet synchronous machine-controlled rectifier are investigated. Main issues first concern the different kinds of transistors switching modes allowed by the proposed current sensing mode when the machine operates either as a generator or as a motor. Second, the modulated hysteresis method is presented, which merges the performances of robustness and dynamic of the classical hysteresis method and imposes the switching frequency alike pulsewidth modulation techniques. A test bench at reduced power permits to test the switching modes as well as classical and modulated hysteresis methods for both motor and generator operating modes and to validate the simulation predictions. The digital signal processor algorithm elaborated for the control strategy is flexible and adaptable to all kinds of transistor switchings and machine operating modes.