高原地区雷害频繁,电气外绝缘性能降低。修建高原铁路隧道需要对隧道净空绝缘间隙进行修正,其中隧道-架空接触网气隙间距是确定隧道净空间隙的重要依据,雷电冲击放电电压是确定该气隙最小间距的控制因素。国内外现有高海拔修正系列标准...高原地区雷害频繁,电气外绝缘性能降低。修建高原铁路隧道需要对隧道净空绝缘间隙进行修正,其中隧道-架空接触网气隙间距是确定隧道净空间隙的重要依据,雷电冲击放电电压是确定该气隙最小间距的控制因素。国内外现有高海拔修正系列标准均不适用于3000 m以上地区,考虑放电基本特性和原理,在人工气候实验室搭建铁路隧道的典型结构,并模拟高原地区气候特点,研究300~700 mm 5个短间隙在243~4000 m 5个海拔条件下的正、负极性雷电冲击放电特性。基于大气实际参数提出了3种隧道净空绝缘间隙修正方法,建议在2、3、4 km海拔处分别按照340、390、440 mm进行隧道-架空接触网绝缘间隙修正,从而确定最小隧道净空高度。该方法可为高海拔地区铁路的电气化设计和改造提供指导,具有工程应用意义。展开更多
文摘高原地区雷害频繁,电气外绝缘性能降低。修建高原铁路隧道需要对隧道净空绝缘间隙进行修正,其中隧道-架空接触网气隙间距是确定隧道净空间隙的重要依据,雷电冲击放电电压是确定该气隙最小间距的控制因素。国内外现有高海拔修正系列标准均不适用于3000 m以上地区,考虑放电基本特性和原理,在人工气候实验室搭建铁路隧道的典型结构,并模拟高原地区气候特点,研究300~700 mm 5个短间隙在243~4000 m 5个海拔条件下的正、负极性雷电冲击放电特性。基于大气实际参数提出了3种隧道净空绝缘间隙修正方法,建议在2、3、4 km海拔处分别按照340、390、440 mm进行隧道-架空接触网绝缘间隙修正,从而确定最小隧道净空高度。该方法可为高海拔地区铁路的电气化设计和改造提供指导,具有工程应用意义。