Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in...Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.展开更多
A new elasto-plastic constitutive model is presented in the framework of plasticity theory. The strength characteristics of a diatomaceous soft rock is investigated. The friction angle and cohesion of soft rock are mo...A new elasto-plastic constitutive model is presented in the framework of plasticity theory. The strength characteristics of a diatomaceous soft rock is investigated. The friction angle and cohesion of soft rock are mobilized as a function of plastic strain. A hyperbolic hardening function for the mobilized friction and a mixed parabolic and exponential equation for the mobilized cohesion are proposed. In view of the unified strength theory and the mobilizations of strength components, a yield function is given. A plastic potential function is determined by using the non-associated plastic flow rule. An elasto-plastic constitutive model is developed and verified. The results indicate that the proposed model can predict the behavior of soft rock accurately. The advantages of the proposed constitutive model are analyzed. The evidences support that the proposed constitutive model is a mixed hardening/softening model. A hump hardening/softening function for mobilized friction is extended to a more generalized condition.展开更多
Multi-sensor coordinate unification in dimensional metrology is used in order to get holistic, more accurate and reliable information about a workpiece based on several or multiple measurement values from ...Multi-sensor coordinate unification in dimensional metrology is used in order to get holistic, more accurate and reliable information about a workpiece based on several or multiple measurement values from one or more sensors. Because of the problem that standard ball is deficient as a standard artifact in the coordinate unification of high-precision composite measurement in two dimensions (2D) , a new method is proposed in this paper which uses angle gauge blocks as standard artifacts to achieve coordinate unification between the image sensor and the tactile probe. By comparing the standard ball with the angle gauge block as a standard artifact, theoretical analysis and experimental results are given to prove that it is more precise and more convenient to use angle gauge blocks as standard artifacts to achieve coordinate unification of high-precision composite measurement in two dimensions.展开更多
Considering the variation of cohesion along the depth,the upper bound solution of active earth pressure for a rough inclined wall with sloped backfill is formulated based on a log-spiral failure mechanism.For a more a...Considering the variation of cohesion along the depth,the upper bound solution of active earth pressure for a rough inclined wall with sloped backfill is formulated based on a log-spiral failure mechanism.For a more accurate prediction,the influence of intermediate principal stress is taken into consideration using the unified strength theory.Converting the search for the active pressure to an optimization problem,the most critical failure surface can be located by a natural selection-based gravitational search algorithm(GSA).The proposed method is validated compared with existing methods for noncohesive and cohesive cases and proved to be more accordance with the limit equilibrium solution.The influences of the variation of soil cohesion and intermediate principal stress on active earth pressure coefficient are then fully studied.It can be concluded that both the variations of soil cohesion and intermediate principal stress have a significant influence on the active earth pressure coefficient.展开更多
Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the exi...Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the existing strength models were built by regression analysis of experimental data;however,in this article,a new unified strength model is proposed using the Hoek-Brown failure criterion.To study the strength of FRP-confined damaged and undamaged concrete columns,900 test data were collected from the published literature and a large database that contains the cross-sectional shape of each specimen,the damage type,the damage level and the FRP-confined stiffness was established.A new strength model using the Hoek-Brown failure criterion was established and is suitable for both circular and square columns that are undamaged,load-damaged and fire-damaged.Based on the database,most of the existing strength models from the published literature and the model proposed in this paper were evaluated.The evaluation shows that the proposed model can predict the compressive strength for FRP-confined pre-damaged and undamaged concrete columns with good accuracy.展开更多
A unified semi-analytical solution is presented for elastic-plastic stress of a deep circular hydraulic tunnel with support yielding under plane strain conditions.The rock mass is assumed to be elastic-perfectly plast...A unified semi-analytical solution is presented for elastic-plastic stress of a deep circular hydraulic tunnel with support yielding under plane strain conditions.The rock mass is assumed to be elastic-perfectly plastic and governed by the unified strength theory (UST).Different major principal stresses in different engineering situations and different support yielding conditions are both considered.The unified solution obtained in this work is a series of results,rather than one specific solution,hence it is suitable for a wide range of rock masses.In addition,parametric study is conducted to investigate the effect of intermediate principal stress.The result shows the major principal stress should be rationally chosen according to different engineering conditions.Finally,the applicability of the unified solution is discussed according to the critical pressures.展开更多
基金Project(2021JJ10063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(202115)supported by the Science and Technology Progress and Innovation Project of Hunan Provincial Department of Transportation,ChinaProject(2021K094-Z)supported by the Science and Technology Research and Development Program of China Railway Guangzhou Group Co.,Ltd。
文摘Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.
基金Projects(5127915551009114)supported by the National Natural Science Foundation of ChinaProject(xjj2014127)supported by the Fundamental Research Funds for the Central Universities,China
文摘A new elasto-plastic constitutive model is presented in the framework of plasticity theory. The strength characteristics of a diatomaceous soft rock is investigated. The friction angle and cohesion of soft rock are mobilized as a function of plastic strain. A hyperbolic hardening function for the mobilized friction and a mixed parabolic and exponential equation for the mobilized cohesion are proposed. In view of the unified strength theory and the mobilizations of strength components, a yield function is given. A plastic potential function is determined by using the non-associated plastic flow rule. An elasto-plastic constitutive model is developed and verified. The results indicate that the proposed model can predict the behavior of soft rock accurately. The advantages of the proposed constitutive model are analyzed. The evidences support that the proposed constitutive model is a mixed hardening/softening model. A hump hardening/softening function for mobilized friction is extended to a more generalized condition.
基金National Key Scientific Instrument and Equipment Development Project(No.2013YQ170539)
文摘Multi-sensor coordinate unification in dimensional metrology is used in order to get holistic, more accurate and reliable information about a workpiece based on several or multiple measurement values from one or more sensors. Because of the problem that standard ball is deficient as a standard artifact in the coordinate unification of high-precision composite measurement in two dimensions (2D) , a new method is proposed in this paper which uses angle gauge blocks as standard artifacts to achieve coordinate unification between the image sensor and the tactile probe. By comparing the standard ball with the angle gauge block as a standard artifact, theoretical analysis and experimental results are given to prove that it is more precise and more convenient to use angle gauge blocks as standard artifacts to achieve coordinate unification of high-precision composite measurement in two dimensions.
基金Project(2016YFC0800200)supported by the National Key Research Plan of China。
文摘Considering the variation of cohesion along the depth,the upper bound solution of active earth pressure for a rough inclined wall with sloped backfill is formulated based on a log-spiral failure mechanism.For a more accurate prediction,the influence of intermediate principal stress is taken into consideration using the unified strength theory.Converting the search for the active pressure to an optimization problem,the most critical failure surface can be located by a natural selection-based gravitational search algorithm(GSA).The proposed method is validated compared with existing methods for noncohesive and cohesive cases and proved to be more accordance with the limit equilibrium solution.The influences of the variation of soil cohesion and intermediate principal stress on active earth pressure coefficient are then fully studied.It can be concluded that both the variations of soil cohesion and intermediate principal stress have a significant influence on the active earth pressure coefficient.
基金Project(2017M622540)supported by the China Postdoctoral Science FoundationProject(51808419)supported by the National Natural Science Foundation of China+1 种基金Project(2019CFB217)supported by the National Natural Science Foundation of Hubei Province,ChinaProject(201623)supported by the Science and Technology Project of Wuhan Urban and Rural Construction Committee,China。
文摘Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the existing strength models were built by regression analysis of experimental data;however,in this article,a new unified strength model is proposed using the Hoek-Brown failure criterion.To study the strength of FRP-confined damaged and undamaged concrete columns,900 test data were collected from the published literature and a large database that contains the cross-sectional shape of each specimen,the damage type,the damage level and the FRP-confined stiffness was established.A new strength model using the Hoek-Brown failure criterion was established and is suitable for both circular and square columns that are undamaged,load-damaged and fire-damaged.Based on the database,most of the existing strength models from the published literature and the model proposed in this paper were evaluated.The evaluation shows that the proposed model can predict the compressive strength for FRP-confined pre-damaged and undamaged concrete columns with good accuracy.
基金Project(50969007)supported by National Natural Science Foundation of ChinaProject(GJJ13753)supported by the Scientific and Technological Research Fund,Department of Education,Jiangxi Province,China
文摘A unified semi-analytical solution is presented for elastic-plastic stress of a deep circular hydraulic tunnel with support yielding under plane strain conditions.The rock mass is assumed to be elastic-perfectly plastic and governed by the unified strength theory (UST).Different major principal stresses in different engineering situations and different support yielding conditions are both considered.The unified solution obtained in this work is a series of results,rather than one specific solution,hence it is suitable for a wide range of rock masses.In addition,parametric study is conducted to investigate the effect of intermediate principal stress.The result shows the major principal stress should be rationally chosen according to different engineering conditions.Finally,the applicability of the unified solution is discussed according to the critical pressures.