Based on local gauge invariance, four different kinds of fundamental interactions in nature are unified in a theory which has Gravitational Gauge Group gauge symmetry. In this approach, gravitational field, like elec...Based on local gauge invariance, four different kinds of fundamental interactions in nature are unified in a theory which has Gravitational Gauge Group gauge symmetry. In this approach, gravitational field, like electromagnetic field, intermediate gauge field, and gluon field, is represented by gauge potential. Four kinds of fundamental interactions are formulated in the similar manner, and therefore can be unified in a direct or semi-direct product group. The model discussed in this paper is a renormalizable quantum model and can be regarded as an extension of the standard model to gravitational interactions, so it can be used to study quantum effects of gravitational interactions.展开更多
The Hawking radiation via tunneling from the dilaton black hole in de Sitter universe is investigated using Parikh Wilczek's method. We show that if the self-gravitational interaction and energy conservation are take...The Hawking radiation via tunneling from the dilaton black hole in de Sitter universe is investigated using Parikh Wilczek's method. We show that if the self-gravitational interaction and energy conservation are taken into account, the modified radiation spectrum deviates from exact thermal spectrum and satisfies the unitary theory.展开更多
The consequence of the wave-particle duality is a pointer to the fact that everything in the universe, including light and gravity, can be described in terms of particles. These particles have a property called spin. ...The consequence of the wave-particle duality is a pointer to the fact that everything in the universe, including light and gravity, can be described in terms of particles. These particles have a property called spin. What the spin of a particle really tells us is what the particle looks like from different directions, in other words it is nothing more than a geometrical property. The motivation for this work stems from the fact that geometry has always played a fundamental role in physics, macroscopic and microscopic, relativistic and non-relativistic. Our belief is that if a GUT (Grand Unified Theory) is to be established at all, then geometry must be the common thread connecting all the different aspects of the already known theories. We propose a new way to visualize the concept of four-dimensional space-time in simple geometrical terms. It is observed that our time frame becomes curved, just as the space-frame, in the presence of a massive gravitating body. Specifically, in the event horizon of a black hole, where time seems to grind to a halt for external observers, the time frame appears to curve in on itself, forming an imaginary loop. This results in extreme time dilation, due to the strong gravitational field. Finally we adopt a descriptive view of a GUT called Quantum Necklace GUT which attempts to connect gravity together the other three fundamental forces of nature, namely the strong, weak and electromagnetic interactions.展开更多
Three new cyanido-bridged heterometallic ReIVNin and ReIVCu one-dimensional systems were synthesized and extensively characterized both structurally and magnetically. Single-crystal X-ray diffraction analysis revealed...Three new cyanido-bridged heterometallic ReIVNin and ReIVCu one-dimensional systems were synthesized and extensively characterized both structurally and magnetically. Single-crystal X-ray diffraction analysis revealed that these compounds display a common topology, with chains composed of alternating [RetVc14(CN)2]2- and [Mn(cyclam)]2+ (M = Ni in 1, Cu in 2) or [Cull(N,N'-dimethylcyclam)]2+ (in 3) building units. Two different chain orientations with a tilt angle of ca. 51° to 55° are present in the crystal packing of these compounds. The magnetic susceptibility measurements suggest the presence of intrachain ferromagnetic interactions between the S = 3/2 ReTM centers and the 3d metal ions: S = 1 Ni1I or S = 1/2 CuII. At low temperature, a three-dimensional ordered magnetic phase induced by interchain antiferromagnetic interactions (antiferromagnetic for 1 and 2; canted antiferromagnetic for 3) is detected for the three compounds.展开更多
文摘Based on local gauge invariance, four different kinds of fundamental interactions in nature are unified in a theory which has Gravitational Gauge Group gauge symmetry. In this approach, gravitational field, like electromagnetic field, intermediate gauge field, and gluon field, is represented by gauge potential. Four kinds of fundamental interactions are formulated in the similar manner, and therefore can be unified in a direct or semi-direct product group. The model discussed in this paper is a renormalizable quantum model and can be regarded as an extension of the standard model to gravitational interactions, so it can be used to study quantum effects of gravitational interactions.
基金supported by the Natural Science Foundation of Zhanjiang Normal University
文摘The Hawking radiation via tunneling from the dilaton black hole in de Sitter universe is investigated using Parikh Wilczek's method. We show that if the self-gravitational interaction and energy conservation are taken into account, the modified radiation spectrum deviates from exact thermal spectrum and satisfies the unitary theory.
文摘The consequence of the wave-particle duality is a pointer to the fact that everything in the universe, including light and gravity, can be described in terms of particles. These particles have a property called spin. What the spin of a particle really tells us is what the particle looks like from different directions, in other words it is nothing more than a geometrical property. The motivation for this work stems from the fact that geometry has always played a fundamental role in physics, macroscopic and microscopic, relativistic and non-relativistic. Our belief is that if a GUT (Grand Unified Theory) is to be established at all, then geometry must be the common thread connecting all the different aspects of the already known theories. We propose a new way to visualize the concept of four-dimensional space-time in simple geometrical terms. It is observed that our time frame becomes curved, just as the space-frame, in the presence of a massive gravitating body. Specifically, in the event horizon of a black hole, where time seems to grind to a halt for external observers, the time frame appears to curve in on itself, forming an imaginary loop. This results in extreme time dilation, due to the strong gravitational field. Finally we adopt a descriptive view of a GUT called Quantum Necklace GUT which attempts to connect gravity together the other three fundamental forces of nature, namely the strong, weak and electromagnetic interactions.
基金supported by the Centre National de la Recherche Scientifique (CNRS)the University of Bordeaux+3 种基金the Conseil Régional d'Aqui-taineGIS Advanced Materials in Aquitaine (COMET Project)the ANR(NT09_469563, AC-MA Gnets project)the Erasmus Mundus Mobilitywith Asia (EMMA) program (External Cooperation Window-ASIE) for the PhD fellowship of I. B.
文摘Three new cyanido-bridged heterometallic ReIVNin and ReIVCu one-dimensional systems were synthesized and extensively characterized both structurally and magnetically. Single-crystal X-ray diffraction analysis revealed that these compounds display a common topology, with chains composed of alternating [RetVc14(CN)2]2- and [Mn(cyclam)]2+ (M = Ni in 1, Cu in 2) or [Cull(N,N'-dimethylcyclam)]2+ (in 3) building units. Two different chain orientations with a tilt angle of ca. 51° to 55° are present in the crystal packing of these compounds. The magnetic susceptibility measurements suggest the presence of intrachain ferromagnetic interactions between the S = 3/2 ReTM centers and the 3d metal ions: S = 1 Ni1I or S = 1/2 CuII. At low temperature, a three-dimensional ordered magnetic phase induced by interchain antiferromagnetic interactions (antiferromagnetic for 1 and 2; canted antiferromagnetic for 3) is detected for the three compounds.