[Objective] The aim was to study the effect of tomato yellow leaf curl virus (TYLCV) infection on leaf anatomical structure and protective enzyme system of tomato. [Method] The anatomical structure of infected and h...[Objective] The aim was to study the effect of tomato yellow leaf curl virus (TYLCV) infection on leaf anatomical structure and protective enzyme system of tomato. [Method] The anatomical structure of infected and healthy leaves of tomato were observed and compared by using paraffin section method. The activity changes of SOD, POD and CAT in the infected leaves of tomato were determined. [ Result] The results revealed that there were some differences in anatomical structure between healthy and infected leaves. Some cells of infected leaves were damaged so that the leaves curled and became yellow, which affected the normal function of organs. Compared with control, enzyme activities in the tomato plants infected by TYLCV were enhanced at the early periods and higher than that in control, then started to decline at the middle and late periods but lower than that in control.[ Conclusion] After infection by TYLCV, the leaf anatomical structure of tomato was changed greatly and the protective enzyme system was damaged severely, and affected the normal physJological metabolic functions of tissues and organs in tomato in further.展开更多
Chile is a very important country that forms part of the Andean metallogenic belts. The Atacama and Domeyko fault systems in northern Chile control the tectonic- magmatic activities that migrate eastward and the types...Chile is a very important country that forms part of the Andean metallogenic belts. The Atacama and Domeyko fault systems in northern Chile control the tectonic- magmatic activities that migrate eastward and the types of mineral resources. In this paper, we processed and interpreted aeromagnetic data from northern Chile using reduction to pole, upward field continuation, the second derivative calculation in the vertical direction, inclination angle calculation, and analytical signal amplitude analysis. We revealed the locations and planar distribution characteristics of the regional deep faults along the NNE and NS directions. Furthermore, we observed that the major reasons for the formation of the tectonic-magmatic rocks belts were the nearly parallel deep faults distributed from west to east and multiple magmatic activities along these faults. We ascertained the locations of volcanic mechanisms and the relationships between them using these regional deep faults. We deduced the spatial distributions of the basic-intermediate, basic, and acidic igneous rocks, intrusive rocks, and sedimentary sequences. We showed the linear positive magnetic anomalies and magnetic anomaly gradient zones by slowly varying the background, negative magnetic anomaly field, which indicated the presence of strong magmatic activities in these regional deep faults; it also revealed the favorable areas of copper and polymetallic mineralization. This study provides some basic information for further research on the geology, structural characteristics, and mineral resource prospecting in northern Chile.展开更多
In this paper, we review the current state- of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate co...In this paper, we review the current state- of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate coordination of many processes that can be attributed to a variety of brain regions. On the surface, many of these functions can appear to be controlled by specific anatomical structures; however, in reality, numerous dynamic networks within the brain contribute to its function through an interconnected web of neuronal and synaptic pathways. The brain, in its healthy or pathological state, can therefore be best understood by taking a systems-level approach. While numerous neuroengineering technologies exist, we focus here on three major thrusts in the field of systems neuroengineering: neuroimaging, neural interfacing, and neuromodulation. Neuroimaging enables us to delineate the structural and functional organization of the brain, which is key in understanding how the neural system functions in both normal and disease states. Based on such knowledge, devices can be used either to communicate with the neural system, as in neural interface systems, or to modulate brain activity, as in neuromodulation systems. The consideration of these three fields is key to the development and application of neuro-devices. Feedback-based neuro-devices require the ability to sense neural activity (via a neuroimaging modality) through a neural interface (invasive or noninvasive) and ultimately to select a set of stimulation parameters in order to alter neural function via a neuromodulation modality. Systems neuroengineering refers to the use of engineering tools and technologies to image, decode, and modulate the brain in order to comprehend its functions and to repair its dysfunction. Interactions between these fields will help to shape the future of systems neuroengineering--to develop neurotechniques for enhancing the understanding of whole- brain function and dysfunction, and the management of neurological and mental disorders.展开更多
The exact solutions of the general nonlinear dynamic system in a new double-chain model of DNA are studied by using both the Conte's Painlevé truncation expansion and the Pickering's truncation expansion....The exact solutions of the general nonlinear dynamic system in a new double-chain model of DNA are studied by using both the Conte's Painlevé truncation expansion and the Pickering's truncation expansion. The symmetric kink-kink shape excitations can be found in both the Conte's truncation expansion and the Pickering's truncation expansion. Three types of new localized excitations, the asymmetric kink-kink excitations, the soliton-kink excitation, and the kink-soliton excitations, are found by using the Pickering's nonstandard truncation expansion.展开更多
A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the d...A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.展开更多
Proper orthogonal decomposition (POD) is an effective statistical technique for data reduction and feature extraction of the random field including the wind field. This paper introduces the theory of the POD and ill...Proper orthogonal decomposition (POD) is an effective statistical technique for data reduction and feature extraction of the random field including the wind field. This paper introduces the theory of the POD and illustrates engineering of structures. Using the POD technique, it is shown that wind pressure data can be accurately reconstructed with a limited number of modes using the wind pressure data from wind tunnel test. Comparing the reconstructed values by POD with the original measured values from the wind tunnel test both in the time and frequency domains, it is concluded that the proper orthogonal decomposition(POD) is an efficient and practical technique for deriving the random wind pressure field from limited known data as shown in the pitched roof example in this paper.展开更多
In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflec...In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.展开更多
Using improved homogeneous balance method, we obtain complex function form new exact solutions for the (1+1)-dimensional dispersion-less system, and from the exact solutions we derive real function form solution of...Using improved homogeneous balance method, we obtain complex function form new exact solutions for the (1+1)-dimensional dispersion-less system, and from the exact solutions we derive real function form solution of the field u. Based on this real function form solution, we find some new interesting coherent structures by selecting arbitrary functions appropriately.展开更多
Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalizati...Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.展开更多
The proof system, based on resolution method, has become quite popular in automatic theorem proving, because this method is simple to implement. At present many kinds of extensions for resolution method are known: Re...The proof system, based on resolution method, has become quite popular in automatic theorem proving, because this method is simple to implement. At present many kinds of extensions for resolution method are known: Resolution with restricted number of variables in disjuncts, resolution over Linear Equations, Cutting planes, etc. For Classical, Intuitionistic and Minimal (Johansson's) propositional logics, the authors introduce the family of resolution systems with full substitution rule (SRC, SRI and SRM) and with e-restricted substitution rule (SeRC, SeRf and SeRM), where the number of substituted formula connectives is bounded by . The authors show that for each of mentioned logic the SR-type system (in tree form) is polynomially equivalent to Frege systems by size, but for every ~' 〉 0, Se+lR-type has exponential speed-up over the SeR-type (in tree form).展开更多
Sustained large-scale migration has been an important structural force bringing about change in the Chinese peasant family. The de-localization resulting from population movement has eroded and undermined the patriarc...Sustained large-scale migration has been an important structural force bringing about change in the Chinese peasant family. The de-localization resulting from population movement has eroded and undermined the patriarchal family system, with its high degree of overlap between kin-based and place-based ties. The resultant changes in the family institution, however, represent not just a de-traditionalization, but also at the same time a process of reconstructing tradition. The continuation and reconstruction of the patriarchal family in the midst of deconstruction is a result of the interplay of institutional constraints, market dominance and the patrilineal and patriarchal system's own need for continued authority. This changing family pattern not only provides a low-cost basis for the survival and development of migrant workers "working in the city but rooted in the countryside," but also, through its peculiarly flexible adaptability, serves as a buffer for dealing with contradictions and conflicts arising from changes in rural society and plays a role in relieving social tensions under specific historical conditions.展开更多
We present in this paper a structural decomposition for linear multivariable singular systems. Such a decomposition has a distinct feature of capturing and displaying all the structural properties, such as the finite ...We present in this paper a structural decomposition for linear multivariable singular systems. Such a decomposition has a distinct feature of capturing and displaying all the structural properties, such as the finite and infinite zero structures, invertibility structures, and redundant dynamics of the given system. As its counterpart for non-singular systems, we believe that the technique is a powerful tool in solving control problems for singular systems.展开更多
基金Supported by the National 863 Program:Gene Polymerization Tech-nology Study and New Variety Breeding of High-qualityMulti-resist-ance and High-yield Tomato(2007AA10Z178)+1 种基金Shanghai Agricul-ture Committee Key ProjectGermplasm Innovation of Tomato Re-sistance to Yellow Leaf Curl Virus(2007)~~
文摘[Objective] The aim was to study the effect of tomato yellow leaf curl virus (TYLCV) infection on leaf anatomical structure and protective enzyme system of tomato. [Method] The anatomical structure of infected and healthy leaves of tomato were observed and compared by using paraffin section method. The activity changes of SOD, POD and CAT in the infected leaves of tomato were determined. [ Result] The results revealed that there were some differences in anatomical structure between healthy and infected leaves. Some cells of infected leaves were damaged so that the leaves curled and became yellow, which affected the normal function of organs. Compared with control, enzyme activities in the tomato plants infected by TYLCV were enhanced at the early periods and higher than that in control, then started to decline at the middle and late periods but lower than that in control.[ Conclusion] After infection by TYLCV, the leaf anatomical structure of tomato was changed greatly and the protective enzyme system was damaged severely, and affected the normal physJological metabolic functions of tissues and organs in tomato in further.
基金supported by the National Science Foundation of China(No.41404070)China Geological Survey(No.DD20160102-02)
文摘Chile is a very important country that forms part of the Andean metallogenic belts. The Atacama and Domeyko fault systems in northern Chile control the tectonic- magmatic activities that migrate eastward and the types of mineral resources. In this paper, we processed and interpreted aeromagnetic data from northern Chile using reduction to pole, upward field continuation, the second derivative calculation in the vertical direction, inclination angle calculation, and analytical signal amplitude analysis. We revealed the locations and planar distribution characteristics of the regional deep faults along the NNE and NS directions. Furthermore, we observed that the major reasons for the formation of the tectonic-magmatic rocks belts were the nearly parallel deep faults distributed from west to east and multiple magmatic activities along these faults. We ascertained the locations of volcanic mechanisms and the relationships between them using these regional deep faults. We deduced the spatial distributions of the basic-intermediate, basic, and acidic igneous rocks, intrusive rocks, and sedimentary sequences. We showed the linear positive magnetic anomalies and magnetic anomaly gradient zones by slowly varying the background, negative magnetic anomaly field, which indicated the presence of strong magmatic activities in these regional deep faults; it also revealed the favorable areas of copper and polymetallic mineralization. This study provides some basic information for further research on the geology, structural characteristics, and mineral resource prospecting in northern Chile.
基金supported in part by the US National Institutes of Health (NIH) (EB006433, EY023101, EB008389,and HL117664)the US National Science Foundation (NSF) (CBET1450956, CBET-1264782, and DGE-1069104),to Bin He
文摘In this paper, we review the current state- of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate coordination of many processes that can be attributed to a variety of brain regions. On the surface, many of these functions can appear to be controlled by specific anatomical structures; however, in reality, numerous dynamic networks within the brain contribute to its function through an interconnected web of neuronal and synaptic pathways. The brain, in its healthy or pathological state, can therefore be best understood by taking a systems-level approach. While numerous neuroengineering technologies exist, we focus here on three major thrusts in the field of systems neuroengineering: neuroimaging, neural interfacing, and neuromodulation. Neuroimaging enables us to delineate the structural and functional organization of the brain, which is key in understanding how the neural system functions in both normal and disease states. Based on such knowledge, devices can be used either to communicate with the neural system, as in neural interface systems, or to modulate brain activity, as in neuromodulation systems. The consideration of these three fields is key to the development and application of neuro-devices. Feedback-based neuro-devices require the ability to sense neural activity (via a neuroimaging modality) through a neural interface (invasive or noninvasive) and ultimately to select a set of stimulation parameters in order to alter neural function via a neuromodulation modality. Systems neuroengineering refers to the use of engineering tools and technologies to image, decode, and modulate the brain in order to comprehend its functions and to repair its dysfunction. Interactions between these fields will help to shape the future of systems neuroengineering--to develop neurotechniques for enhancing the understanding of whole- brain function and dysfunction, and the management of neurological and mental disorders.
基金国家杰出青年科学基金,the Research Fund for the Doctoral Program of Higher Education of China,国家自然科学基金
文摘The exact solutions of the general nonlinear dynamic system in a new double-chain model of DNA are studied by using both the Conte's Painlevé truncation expansion and the Pickering's truncation expansion. The symmetric kink-kink shape excitations can be found in both the Conte's truncation expansion and the Pickering's truncation expansion. Three types of new localized excitations, the asymmetric kink-kink excitations, the soliton-kink excitation, and the kink-soliton excitations, are found by using the Pickering's nonstandard truncation expansion.
基金Project(51275205)supported by the National Natural Science Foundation of China
文摘A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.
基金Acknowledgements The authors are grateful for the support of this research by the Committee of National Science Foundation of China (50908077) and Foundation of Heilongjiang Province Educational Committee (11551368).
文摘Proper orthogonal decomposition (POD) is an effective statistical technique for data reduction and feature extraction of the random field including the wind field. This paper introduces the theory of the POD and illustrates engineering of structures. Using the POD technique, it is shown that wind pressure data can be accurately reconstructed with a limited number of modes using the wind pressure data from wind tunnel test. Comparing the reconstructed values by POD with the original measured values from the wind tunnel test both in the time and frequency domains, it is concluded that the proper orthogonal decomposition(POD) is an efficient and practical technique for deriving the random wind pressure field from limited known data as shown in the pitched roof example in this paper.
基金Projects 50221402, 50490271 and 50025413 supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China (2009CB219603, 2009 CB724601, 2006CB202209 and 2005CB221500)+1 种基金the Key Project of the Ministry of Education (306002)the Program for Changjiang Scholars and Innovative Research Teams in Universities of MOE (IRT0408)
文摘In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.
基金The project supported by National Natural Science Foundation of China under Grant No.40564001Natural Science Foundation of Inner Mongolia under Grant No.200408020113
文摘Using improved homogeneous balance method, we obtain complex function form new exact solutions for the (1+1)-dimensional dispersion-less system, and from the exact solutions we derive real function form solution of the field u. Based on this real function form solution, we find some new interesting coherent structures by selecting arbitrary functions appropriately.
基金Supported by the National Natural Science Foundation of China(61473026,61104131)the Fundamental Research Funds for the Central Universities(JD1413)
文摘Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.
文摘The proof system, based on resolution method, has become quite popular in automatic theorem proving, because this method is simple to implement. At present many kinds of extensions for resolution method are known: Resolution with restricted number of variables in disjuncts, resolution over Linear Equations, Cutting planes, etc. For Classical, Intuitionistic and Minimal (Johansson's) propositional logics, the authors introduce the family of resolution systems with full substitution rule (SRC, SRI and SRM) and with e-restricted substitution rule (SeRC, SeRf and SeRM), where the number of substituted formula connectives is bounded by . The authors show that for each of mentioned logic the SR-type system (in tree form) is polynomially equivalent to Frege systems by size, but for every ~' 〉 0, Se+lR-type has exponential speed-up over the SeR-type (in tree form).
文摘Sustained large-scale migration has been an important structural force bringing about change in the Chinese peasant family. The de-localization resulting from population movement has eroded and undermined the patriarchal family system, with its high degree of overlap between kin-based and place-based ties. The resultant changes in the family institution, however, represent not just a de-traditionalization, but also at the same time a process of reconstructing tradition. The continuation and reconstruction of the patriarchal family in the midst of deconstruction is a result of the interplay of institutional constraints, market dominance and the patrilineal and patriarchal system's own need for continued authority. This changing family pattern not only provides a low-cost basis for the survival and development of migrant workers "working in the city but rooted in the countryside," but also, through its peculiarly flexible adaptability, serves as a buffer for dealing with contradictions and conflicts arising from changes in rural society and plays a role in relieving social tensions under specific historical conditions.
文摘We present in this paper a structural decomposition for linear multivariable singular systems. Such a decomposition has a distinct feature of capturing and displaying all the structural properties, such as the finite and infinite zero structures, invertibility structures, and redundant dynamics of the given system. As its counterpart for non-singular systems, we believe that the technique is a powerful tool in solving control problems for singular systems.