The quality of background error statistics is one of the key components for successful assimilation of observations in a numerical model.The background error covariance(BEC) of ocean waves is generally estimated under...The quality of background error statistics is one of the key components for successful assimilation of observations in a numerical model.The background error covariance(BEC) of ocean waves is generally estimated under an assumption that it is stationary over a period of time and uniform over a domain.However,error statistics are in fact functions of the physical processes governing the meteorological situation and vary with the wave condition.In this paper,we simulated the BEC of the significant wave height(SWH) employing Monte Carlo methods.An interesting result is that the BEC varies consistently with the mean wave direction(MWD).In the model domain,the BEC of the SWH decreases significantly when the MWD changes abruptly.A new BEC model of the SWH based on the correlation between the BEC and MWD was then developed.A case study of regional data assimilation was performed,where the SWH observations of buoy 22001 were used to assess the SWH hindcast.The results show that the new BEC model benefits wave prediction and allows reasonable approximations of anisotropy and inhomogeneous errors.展开更多
Aiming at the adverse effect caused by limited detecting probability of sensors on filtering preci- sion of a nonlinear system state, a novel muhi-sensor federated unscented Kalman filtering algorithm is proposed. Fir...Aiming at the adverse effect caused by limited detecting probability of sensors on filtering preci- sion of a nonlinear system state, a novel muhi-sensor federated unscented Kalman filtering algorithm is proposed. Firstly, combined with the residual detection strategy, effective observations are cor- rectly identified. Secondly, according to the missing characteristic of observations and the structural feature of unscented Kalman filter, the iterative process of the single-sensor unscented Kalman filter in intermittent observations is given. The key idea is that the state estimation and its error covariance matrix are replaced by the state one-step prediction and its error covariance matrix, when the phe- nomenon of observations missing occurs. Finally, based on the realization mechanism of federated filter, a new fusion framework of state estimation from each local node is designed. And the filtering precision of system state is improved further by the effective management of observations missing and the rational utilization of redundancy and complementary information among multi-sensor observa- tions. The theory analysis and simulation results show the feasibility and effectiveness of the pro- posed algorithm.展开更多
基金Supported by the National Natural Science Foundation of China (Nos.40806011,U1133001)the Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences(No. KLOCAW0806)
文摘The quality of background error statistics is one of the key components for successful assimilation of observations in a numerical model.The background error covariance(BEC) of ocean waves is generally estimated under an assumption that it is stationary over a period of time and uniform over a domain.However,error statistics are in fact functions of the physical processes governing the meteorological situation and vary with the wave condition.In this paper,we simulated the BEC of the significant wave height(SWH) employing Monte Carlo methods.An interesting result is that the BEC varies consistently with the mean wave direction(MWD).In the model domain,the BEC of the SWH decreases significantly when the MWD changes abruptly.A new BEC model of the SWH based on the correlation between the BEC and MWD was then developed.A case study of regional data assimilation was performed,where the SWH observations of buoy 22001 were used to assess the SWH hindcast.The results show that the new BEC model benefits wave prediction and allows reasonable approximations of anisotropy and inhomogeneous errors.
基金Supported by the National Natural Science Foundation(NNSF)of China under Grant(No.61300214)the Science and Technology Innovation Team Support Plan of Education Department of Henan Province(No.13IRTSTHN021)+5 种基金the Science and Technology Research Key Project of Education Department of Henan Province(No.13A413066)the Basic and Frontier Technology Research Plan of Henan Province(No.132300410148)the Funding Scheme of Young Key Teacher of Henan Province Universities(No.2013GGJS-026)the Key Project of Teaching Reform Research of Henan University(No.HDXJJG2013-07)the Postdoctoral Science Fund of Henan Province(No.2013029)the Postdoctoral Science Fund of China(No.2014M551999)
文摘Aiming at the adverse effect caused by limited detecting probability of sensors on filtering preci- sion of a nonlinear system state, a novel muhi-sensor federated unscented Kalman filtering algorithm is proposed. Firstly, combined with the residual detection strategy, effective observations are cor- rectly identified. Secondly, according to the missing characteristic of observations and the structural feature of unscented Kalman filter, the iterative process of the single-sensor unscented Kalman filter in intermittent observations is given. The key idea is that the state estimation and its error covariance matrix are replaced by the state one-step prediction and its error covariance matrix, when the phe- nomenon of observations missing occurs. Finally, based on the realization mechanism of federated filter, a new fusion framework of state estimation from each local node is designed. And the filtering precision of system state is improved further by the effective management of observations missing and the rational utilization of redundancy and complementary information among multi-sensor observa- tions. The theory analysis and simulation results show the feasibility and effectiveness of the pro- posed algorithm.