In present paper, we obtain the inverse moment estimations of parameters of the Birnbaum-Saunders fatigue life distribution based on Type-Ⅱ bilateral censored samples and multiply Type-Ⅱ censored sample. In this pap...In present paper, we obtain the inverse moment estimations of parameters of the Birnbaum-Saunders fatigue life distribution based on Type-Ⅱ bilateral censored samples and multiply Type-Ⅱ censored sample. In this paper, we also get the interval estimations of the scale parameters.展开更多
Commonly used statistical procedure to describe the observed statistical sets is to use their conventional moments or cumulants. When choosing an appropriate parametric distribution for the data set is typically that ...Commonly used statistical procedure to describe the observed statistical sets is to use their conventional moments or cumulants. When choosing an appropriate parametric distribution for the data set is typically that parameters of a parametric distribution are estimated using the moment method of creating a system of equations in which the sample conventional moments lay in the equality of the corresponding moments of the theoretical distribution. However, the moment method of parameter estimation is not always convenient, especially for small samples. An alternative approach is based on the use of other characteristics, which the author calls L-moments. L-moments are analogous to conventional moments, but they are based on linear combinations of order statistics, i.e., L-statistics. Using L-moments is theoretically preferable to the conventional moments and consists in the fact that L-moments characterize a wider range of distribution. When estimating from sample L-moments, L-moments are more robust to the presence of outliers in the data. Experience also shows that, compared to conventional moments, L-moments are less prone to bias of estimation. Parameter estimates obtained using L-moments are mainly in the case of small samples often even more accurate than estimates of parameters made by maximum likelihood method. Using the method of L-moments in the case of small data sets from the meteorology is primarily known in statistical literature. This paper deals with the use of L-moments in the case for large data sets of income distribution (individual data) and wage distribution (data are ordered to form of interval frequency distribution of extreme open intervals). This paper also presents a comparison of the accuracy of the method of L-moments with an accuracy of other methods of point estimation of parameters of parametric probability distribution in the case of large data sets of individual data and data ordered to form of interval frequency distribution.展开更多
Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(...Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(DSIROV) is designed to solve these problems which can be equipped with many advanced sensors such as acoustical,optical and electrical sensors for underwater dam inspection.A least-square parameter estimation method is utilized to estimate the hydrodynamic coefficients of DSIROV,and a four degree-of-freedom(DOF) simulation system is constructed.The architecture of DSIROV's motion control system is introduced,which includes hardware and software structures.The hardware based on PC104 BUS,uses AMD ELAN520 as the controller's embedded CPU and all control modules work in VxWorks real-time operating system.Information flow of the motion system of DSIROV,automatic control of dam scanning and dead-reckoning algorithm for navigation are also discussed.The reliability of DSIROV's control system can be verified and the control system can fulfill the motion control mission because embankment checking can be demonstrated by the lake trials.展开更多
An efficient unbiased estimation method is proposed for the direct identification of linear continuous-time system with noisy input and output measurements.Using the Gaussian modulating filters,by numerical integratio...An efficient unbiased estimation method is proposed for the direct identification of linear continuous-time system with noisy input and output measurements.Using the Gaussian modulating filters,by numerical integration,an equivalent discrete identification model which is parameterized with continuous-time model parameters is developed,and the parameters can be estimated by the least-squares (LS) algorithm.Even with white noises in input and output measurement data,the LS estimate is biased,and the bias is determined by the variances of noises.According to the asymptotic analysis,the relationship between bias and noise variances is derived.One equation relating to the measurement noise variances is derived through the analysis of the LS errors.Increasing the degree of denominator of the system transfer function by one,an extended model is constructed.By comparing the true value and LS estimates of the parameters between original and extended model,another equation with input and output noise variances is formulated.So,the noise variances are resolved by the set of equations,the LS bias is eliminated and the unbiased estimates of system parameters are obtained.A simulation example by comparing the standard LS with bias eliminating LS algorithm indicates that the proposed algorithm is an efficient method with noisy input and output measurements.展开更多
Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected ...Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected empirical likelihood method is proposed to make statistical inference for a class of generalized linear measurement error models based on the moment identities of the corrected score function. The asymptotic distribution of the empirical log-likelihood ratio for the regression parameter is proved to be a Chi-squared distribution under some regularity conditions. The corresponding maximum empirical likelihood estimator of the regression parameter π is derived, and the asymptotic normality is shown. Furthermore, we consider the construction of the confidence intervals for one component of the regression parameter by using the partial profile empirical likelihood. Simulation studies are conducted to assess the finite sample performance. A real data set from the ACTG 175 study is used for illustrating the proposed method.展开更多
Comparative studies of trait evolution require accounting for the shared evolutionary history. This is done by includ- ing phylogenetic hypotheses into statistical analyses of species' traits, for which birds often s...Comparative studies of trait evolution require accounting for the shared evolutionary history. This is done by includ- ing phylogenetic hypotheses into statistical analyses of species' traits, for which birds often serve as excellent models. The online publication of the most complete molecular phylogeny of extant bird species (www.birdtree.org, BirdTree hereafter) now allows evolutionary biologists to rapidly obtain sets of equally plausible phylogenetic trees for any set of species to be incorporated as a phylogenetic hypothesis in comparative analyses. We discuss methods to use BirdTree tree sets for comparative studies, either by building a consensus tree that can be incorporated into standard comparative analyses, or by using tree sets to account for the ef- fect of phylogenetie uncertainty. Methods accounting for phylogenetic uncertainty should be preferred whenever possible because they should provide more reliable parameter estimates and realistic confidence intervals around them. Based on a real compara- tive dataset, we ran simulations to investigate the effect of variation in the size of the random tree sets downloaded from BirdTree on the variability of parameter estimates from a bivariate relationship between mass-specific productivity and body mass. Irre- spective of the method of analysis, using at least 1,000 trees allows obtaining parameter estimates with very small (〈 0.15%) co- efficients of variation. We argue that BirdTree, due to the ease of use and the major advantages over previous 'traditional' meth- ods to obtain phylogenetic hypotheses of bird species (e.g. supertrees or manual coding of published phylogenies), will become the standard reference in avian comparative studies for years to come.展开更多
Motivated by the psychological factor of time-varying risk-return relationship, this paper studies a linear varying coefficient ARCH-M model with a latent variable. Due to the unobservable property of the latent varia...Motivated by the psychological factor of time-varying risk-return relationship, this paper studies a linear varying coefficient ARCH-M model with a latent variable. Due to the unobservable property of the latent variable, a corrected likelihood method is employed for parametric estimation. Estimators are proved to be consistent and asymptotically normal under certain regularity conditions. A simple test statistic is also proposed for testing latent variable effect. Simulation results confirm that the proposed estimators and test perform well.The model is further applied to examine whether the risk-return relationship depends on investor's sentiment in American Market and some explainable results are obtained.展开更多
基金Supported by the NSF of China(69971016) Supported by the Shanghai Higher Learning Science Supported by the Technology Development Foundation(00JC14507)
文摘In present paper, we obtain the inverse moment estimations of parameters of the Birnbaum-Saunders fatigue life distribution based on Type-Ⅱ bilateral censored samples and multiply Type-Ⅱ censored sample. In this paper, we also get the interval estimations of the scale parameters.
文摘Commonly used statistical procedure to describe the observed statistical sets is to use their conventional moments or cumulants. When choosing an appropriate parametric distribution for the data set is typically that parameters of a parametric distribution are estimated using the moment method of creating a system of equations in which the sample conventional moments lay in the equality of the corresponding moments of the theoretical distribution. However, the moment method of parameter estimation is not always convenient, especially for small samples. An alternative approach is based on the use of other characteristics, which the author calls L-moments. L-moments are analogous to conventional moments, but they are based on linear combinations of order statistics, i.e., L-statistics. Using L-moments is theoretically preferable to the conventional moments and consists in the fact that L-moments characterize a wider range of distribution. When estimating from sample L-moments, L-moments are more robust to the presence of outliers in the data. Experience also shows that, compared to conventional moments, L-moments are less prone to bias of estimation. Parameter estimates obtained using L-moments are mainly in the case of small samples often even more accurate than estimates of parameters made by maximum likelihood method. Using the method of L-moments in the case of small data sets from the meteorology is primarily known in statistical literature. This paper deals with the use of L-moments in the case for large data sets of income distribution (individual data) and wage distribution (data are ordered to form of interval frequency distribution of extreme open intervals). This paper also presents a comparison of the accuracy of the method of L-moments with an accuracy of other methods of point estimation of parameters of parametric probability distribution in the case of large data sets of individual data and data ordered to form of interval frequency distribution.
基金Project(20100480964) supported by China Postdoctoral Science FoundationProjects(2002AA420090,2008AA092301) supported by the National High Technology Research and Development Program of China
文摘Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(DSIROV) is designed to solve these problems which can be equipped with many advanced sensors such as acoustical,optical and electrical sensors for underwater dam inspection.A least-square parameter estimation method is utilized to estimate the hydrodynamic coefficients of DSIROV,and a four degree-of-freedom(DOF) simulation system is constructed.The architecture of DSIROV's motion control system is introduced,which includes hardware and software structures.The hardware based on PC104 BUS,uses AMD ELAN520 as the controller's embedded CPU and all control modules work in VxWorks real-time operating system.Information flow of the motion system of DSIROV,automatic control of dam scanning and dead-reckoning algorithm for navigation are also discussed.The reliability of DSIROV's control system can be verified and the control system can fulfill the motion control mission because embankment checking can be demonstrated by the lake trials.
基金Project(50875028) supported by the National Natural Science Foundation of China
文摘An efficient unbiased estimation method is proposed for the direct identification of linear continuous-time system with noisy input and output measurements.Using the Gaussian modulating filters,by numerical integration,an equivalent discrete identification model which is parameterized with continuous-time model parameters is developed,and the parameters can be estimated by the least-squares (LS) algorithm.Even with white noises in input and output measurement data,the LS estimate is biased,and the bias is determined by the variances of noises.According to the asymptotic analysis,the relationship between bias and noise variances is derived.One equation relating to the measurement noise variances is derived through the analysis of the LS errors.Increasing the degree of denominator of the system transfer function by one,an extended model is constructed.By comparing the true value and LS estimates of the parameters between original and extended model,another equation with input and output noise variances is formulated.So,the noise variances are resolved by the set of equations,the LS bias is eliminated and the unbiased estimates of system parameters are obtained.A simulation example by comparing the standard LS with bias eliminating LS algorithm indicates that the proposed algorithm is an efficient method with noisy input and output measurements.
基金supported by National Natural Science Foundation of China(Grant Nos.11301569,11471029 and 11101014)the Beijing Natural Science Foundation(Grant No.1142002)+2 种基金the Science and Technology Project of Beijing Municipal Education Commission(Grant No.KM201410005010)Hong Kong Research Grant(Grant No.HKBU202711)Hong Kong Baptist University FRG Grants(Grant Nos.FRG2/11-12/110 and FRG1/13-14/018)
文摘Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected empirical likelihood method is proposed to make statistical inference for a class of generalized linear measurement error models based on the moment identities of the corrected score function. The asymptotic distribution of the empirical log-likelihood ratio for the regression parameter is proved to be a Chi-squared distribution under some regularity conditions. The corresponding maximum empirical likelihood estimator of the regression parameter π is derived, and the asymptotic normality is shown. Furthermore, we consider the construction of the confidence intervals for one component of the regression parameter by using the partial profile empirical likelihood. Simulation studies are conducted to assess the finite sample performance. A real data set from the ACTG 175 study is used for illustrating the proposed method.
文摘Comparative studies of trait evolution require accounting for the shared evolutionary history. This is done by includ- ing phylogenetic hypotheses into statistical analyses of species' traits, for which birds often serve as excellent models. The online publication of the most complete molecular phylogeny of extant bird species (www.birdtree.org, BirdTree hereafter) now allows evolutionary biologists to rapidly obtain sets of equally plausible phylogenetic trees for any set of species to be incorporated as a phylogenetic hypothesis in comparative analyses. We discuss methods to use BirdTree tree sets for comparative studies, either by building a consensus tree that can be incorporated into standard comparative analyses, or by using tree sets to account for the ef- fect of phylogenetie uncertainty. Methods accounting for phylogenetic uncertainty should be preferred whenever possible because they should provide more reliable parameter estimates and realistic confidence intervals around them. Based on a real compara- tive dataset, we ran simulations to investigate the effect of variation in the size of the random tree sets downloaded from BirdTree on the variability of parameter estimates from a bivariate relationship between mass-specific productivity and body mass. Irre- spective of the method of analysis, using at least 1,000 trees allows obtaining parameter estimates with very small (〈 0.15%) co- efficients of variation. We argue that BirdTree, due to the ease of use and the major advantages over previous 'traditional' meth- ods to obtain phylogenetic hypotheses of bird species (e.g. supertrees or manual coding of published phylogenies), will become the standard reference in avian comparative studies for years to come.
基金supported by National Natural Science Foundation of China (Grant Nos. 11271095 and 11401123)the Doctoral Program of Higher Education of China (Grant No. 20124410110002)
文摘Motivated by the psychological factor of time-varying risk-return relationship, this paper studies a linear varying coefficient ARCH-M model with a latent variable. Due to the unobservable property of the latent variable, a corrected likelihood method is employed for parametric estimation. Estimators are proved to be consistent and asymptotically normal under certain regularity conditions. A simple test statistic is also proposed for testing latent variable effect. Simulation results confirm that the proposed estimators and test perform well.The model is further applied to examine whether the risk-return relationship depends on investor's sentiment in American Market and some explainable results are obtained.