期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
计量经济学和统计学视角下的线性回归模型——再议线性回归模型的设定
1
作者 刘明 《统计与信息论坛》 CSSCI 2013年第8期3-7,共5页
从属性、构建方法及意义等方面,分析研究线性回归模型在计量经济学和统计学两学科视角下的差异,并根据这种差异进一步提出回归模型的基本设定思路。研究表明:识别这种差异是完成模型设定工作的基础性和必要性举措,有助于实现线性回归模... 从属性、构建方法及意义等方面,分析研究线性回归模型在计量经济学和统计学两学科视角下的差异,并根据这种差异进一步提出回归模型的基本设定思路。研究表明:识别这种差异是完成模型设定工作的基础性和必要性举措,有助于实现线性回归模型的正确设定。以经典例证对计量经济学和统计学回归模型在应用中的区别以及模型设定问题进行进一步展示和分析。 展开更多
关键词 计量经济学回归模型 统计学回归模型 模型设定
下载PDF
基于气象因子的谷子品质预测模型构建及应用
2
作者 李海涛 李燕 +7 位作者 常清 左小瑞 张鑫磊 米晓楠 马雅丽 张娜 班胜林 赵斯楠 《山西农业科学》 2024年第6期145-155,共11页
基于2019—2021年山西省10个谷子主产区主要品质指标(直链淀粉、粗蛋白、粗脂肪、维生素B1、胶稠度和碱消值)和同期气象资料,利用线性回归统计学方法,分析不同生长阶段多种气象因子对谷子品质的影响,并构建谷子品质的预测模型,旨在为谷... 基于2019—2021年山西省10个谷子主产区主要品质指标(直链淀粉、粗蛋白、粗脂肪、维生素B1、胶稠度和碱消值)和同期气象资料,利用线性回归统计学方法,分析不同生长阶段多种气象因子对谷子品质的影响,并构建谷子品质的预测模型,旨在为谷子气候品质认证提供科学依据。结果表明,影响谷子品质指标的气象因子不是单一的,且不同生长阶段的气象因子对品质的影响也不尽相同;生殖生长阶段尤其是抽穗—乳熟阶段的气象因子决定了谷子的品质,影响谷子品质的主要气象因子为平均气温、平均最高气温、≥10℃活动积温、累计降水量、累计日照时数和气温日较差。其中,限制谷子品质提升的主要气象因子是抽穗—乳熟阶段的气温日较差和累计降水量。利用构建的谷子品质指标预测模型,对晋北、晋中、晋南和晋东南进行谷子品质拟合检验,结果显示,6个谷子品质指标预测模型拟合系数为0.63~0.89,尤其对直链淀粉、粗蛋白和粗脂肪含量的预测效果较好,拟合系数均达到0.8以上。 展开更多
关键词 谷子 气象因子 品质评价 线性回归统计学 相关性分析 山西
下载PDF
输卵管妊娠不同方法治疗后再次妊娠的探讨 被引量:15
3
作者 杨文兰 贾平英 +3 位作者 张运平 潘俊峰 房祥忠 瞿骢 《现代妇产科进展》 CSCD 北大核心 2008年第3期178-181,共4页
目的:探讨输卵管妊娠用不同方法治疗后再次妊娠的情况。方法:随访562例输卵管妊娠后患者,分析影响治疗选择的因素;用生存曲线方法及多因素COX回归分析其中100例有生育要求患者治疗后宫内自然妊娠率和再次异位妊娠率。结果:100例中行输... 目的:探讨输卵管妊娠用不同方法治疗后再次妊娠的情况。方法:随访562例输卵管妊娠后患者,分析影响治疗选择的因素;用生存曲线方法及多因素COX回归分析其中100例有生育要求患者治疗后宫内自然妊娠率和再次异位妊娠率。结果:100例中行输卵管根治术44例,保守性手术28例,药物保守治疗28例。24个月累积重复异位妊娠发生率分别为6.9%,13.7%,0.04%,差异有统计学意义(P<0.005);累积自然宫内妊娠率分别为31.8%,34.4%,65.3%,用COX回归排除影响治疗选择因素,得出年龄≤30岁,无影响输卵管功能高危因素的患者,药物保守治疗后宫内妊娠率最高,保守性手术次之,根治性手术最低;年龄>30岁,存在影响输卵管功能的因素,3种方法治疗后宫内妊娠率差异无统计学意义。结论:为提高年轻输卵管妊娠患者治疗后的宫内妊娠率,应尽量行药物保守治疗。 展开更多
关键词 妊娠 异位 输卵管 外科 手术 药物疗法 统计学回归
下载PDF
Statistical Downscaling Prediction of Summer Precipitation in Southeastern China 被引量:6
4
作者 LIU Ying FAN Ke WANG Hui-Jun 《Atmospheric and Oceanic Science Letters》 2011年第3期173-180,共8页
A statistical downscaling approach based on multiple-linear-regression(MLR) for the prediction of summer precipitation anomaly in southeastern China was established,which was based on the outputs of seven operational ... A statistical downscaling approach based on multiple-linear-regression(MLR) for the prediction of summer precipitation anomaly in southeastern China was established,which was based on the outputs of seven operational dynamical models of Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction(DEMETER) and observed data.It was found that the anomaly correlation coefficients(ACCs) spatial pattern of June-July-August(JJA) precipitation over southeastern China between the seven models and the observation were increased significantly;especially in the central and the northeastern areas,the ACCs were all larger than 0.42(above 95% level) and 0.53(above 99% level).Meanwhile,the root-mean-square errors(RMSE) were reduced in each model along with the multi-model ensemble(MME) for some of the stations in the northeastern area;additionally,the value of RMSE difference between before and after downscaling at some stations were larger than 1 mm d-1.Regionally averaged JJA rainfall anomaly temporal series of the downscaling scheme can capture the main characteristics of observation,while the correlation coefficients(CCs) between the temporal variations of the observation and downscaling results varied from 0.52 to 0.69 with corresponding variations from-0.27 to 0.22 for CCs between the observation and outputs of the models. 展开更多
关键词 statistical downscaling DEMETER south-eastern China summer precipitation anomaly
下载PDF
Source Apportionment of Heavy Metals in Soils Using Multivariate Statistics and Geostatistics 被引量:14
5
作者 QU Ming-Kai LI Wei-Dong +3 位作者 ZHANG Chuan-Rong WANG Shan-Qin YANG Yong HE Li-Yuan 《Pedosphere》 SCIE CAS CSCD 2013年第4期437-444,共8页
The main objectives of this study were to introduce an integrated method for effectively identifying soil heavy metal pollution sources and apportioning their contributions, and apply it to a case study. The method co... The main objectives of this study were to introduce an integrated method for effectively identifying soil heavy metal pollution sources and apportioning their contributions, and apply it to a case study. The method combines the principal component analysis/absolute principal component scores (PCA/APCS) receptor model and geostatistics. The case study was conducted in an area of 31 km2 in the urban-rural transition zone of Wuhan, a metropolis of central China. 124 topsoil samples were collected for measuring the concentrations of eight heavy metal elements (Mn, Cu, Zn, Pb, Cd, Cr, Ni and Co). PCA results revealed that three major factors were responsible for soil heavy metal pollution, which were initially identified as "steel production", "agronomic input" and "coal consumption". The APCS technique, combined with multiple linear regression analysis, was then applied for source apportionment. Steel production appeared to be the main source for Ni, Co, Cd, Zn and Mn, agronomic input for Cu, and coal consumption for Pb and Cr. Geostatistical interpolation using ordinary kriging was finally used to map the spatial distributions of the contributions of pollution sources and further confirm the result interpretations. The introduced method appears to be an effective tool in soil pollution source apportionment and identification, and might provide valuable reference information for pollution control and environmental management. 展开更多
关键词 pollution source receptor model source identification steel production
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部