期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于构造性神经网络的时间序列混合预测模型 被引量:2
1
作者 杨雪洁 赵姝 张燕平 《计算机应用研究》 CSCD 北大核心 2008年第10期2920-2921,2931,共3页
针对传统时间序列预测模型不适应非线性预测而适应非线性预测的BP算法存在收敛速度慢,且容易陷入局部极小等问题,提出一种基于构造性神经网络的时间序列混合预测模型。采用构造性神经网络模型(覆盖算法)得出的类别值对统计时间序列模型... 针对传统时间序列预测模型不适应非线性预测而适应非线性预测的BP算法存在收敛速度慢,且容易陷入局部极小等问题,提出一种基于构造性神经网络的时间序列混合预测模型。采用构造性神经网络模型(覆盖算法)得出的类别值对统计时间序列模型的预测值进行修正,建立一种同时考虑时间序列自身周期变化和外生变量因子对时间序列未来变化趋势影响的混合预测模型,涵盖了实际问题的线性和非线性两方面,提高了预测精度。将该模型应用到粮食产量的预测中,取得了较好的预测效果。 展开更多
关键词 时间序列预测 构造性神经网络 统计时间序列模型 产量预测
下载PDF
大坝监测分析中的时间序列叠合模型 被引量:2
2
作者 朱伟宾 《水电自动化与大坝监测》 2006年第5期52-55,62,共5页
叙述了用时间序列叠合模型建立大坝监测预报模型的2种基本方法:统计一时间序列模型和确定性时序叠合模型。通过统计软件SPSS实现2种时序叠合模型的实例表明,在环境量记录完整的情况下,统计一时间序列模型比单纯的统计回归模型精度要高... 叙述了用时间序列叠合模型建立大坝监测预报模型的2种基本方法:统计一时间序列模型和确定性时序叠合模型。通过统计软件SPSS实现2种时序叠合模型的实例表明,在环境量记录完整的情况下,统计一时间序列模型比单纯的统计回归模型精度要高;在缺少环境量监测或与环境量的因果关系不明显的情况下,用确定性叠合模型分析和预报大坝监测效应量的测值,精度也很高,并能够分离出趋势性分量、周期分量和随机平稳分量,分析的结果简单明了,是大坝监测分析中一种比较好的方法。 展开更多
关键词 随机时间序列 统计-时间序列模型 叠合模型 乘积模型
下载PDF
Integrated Statistical and Engineering Process Control Based on Smooth Transition Autoregressive Model 被引量:1
3
作者 张晓蕾 何桢 《Transactions of Tianjin University》 EI CAS 2013年第2期147-156,共10页
Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic n... Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system.However,linear models sometimes are unable to model complex nonlinear autocorrelation.To solve this problem,this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model,and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system.The performance of this method for checking the trend and sustained shift is analyzed.The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems. 展开更多
关键词 statistical process control engineering process control time series STAR model AUTOCORRELATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部