SV/IEEE 802.15.3a model has been the standard model for Ultra-wide bandwidth (UWB) indoor non-line-of-sight (NLOS) wireless propagation,but for line-of-sight (LOS) case,it is not well defined. In this paper,a new stat...SV/IEEE 802.15.3a model has been the standard model for Ultra-wide bandwidth (UWB) indoor non-line-of-sight (NLOS) wireless propagation,but for line-of-sight (LOS) case,it is not well defined. In this paper,a new statistical distribution model exclusively used for LOS environment is proposed based on investigation of the experimental data. By reducing the number of the visible random arriving clusters,the model itself and the parameters estimating of the corresponding model are simplified in comparison with SV/IEEE 802.15.3a model. The simulation result indicates that the proposed model is more accurate in modeling small-scale LOS environment than SV/IEEE 802.15.3a model when considering cumulative distribution functions (CDFs) for the three key channel impulse response (CIR) statistics.展开更多
基金the Key Program of National Natural Science Foundation of China(Grant No.60432040).
文摘SV/IEEE 802.15.3a model has been the standard model for Ultra-wide bandwidth (UWB) indoor non-line-of-sight (NLOS) wireless propagation,but for line-of-sight (LOS) case,it is not well defined. In this paper,a new statistical distribution model exclusively used for LOS environment is proposed based on investigation of the experimental data. By reducing the number of the visible random arriving clusters,the model itself and the parameters estimating of the corresponding model are simplified in comparison with SV/IEEE 802.15.3a model. The simulation result indicates that the proposed model is more accurate in modeling small-scale LOS environment than SV/IEEE 802.15.3a model when considering cumulative distribution functions (CDFs) for the three key channel impulse response (CIR) statistics.