期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于空间概率乘积核函数的图像分类算法 被引量:5
1
作者 杨赛 赵春霞 《南京理工大学学报》 EI CAS CSCD 北大核心 2014年第3期325-331,共7页
针对词袋模型统计聚集算法忽略了编码矢量的其它统计特征信息及空间信息,并且只能与常用核函数相配合度量图像之间相似性的问题,该文提出一种基于空间概率乘积核函数的图像分类(SPPKBIG)算法。使用Parzen窗方法估计编码矢量所服从的概... 针对词袋模型统计聚集算法忽略了编码矢量的其它统计特征信息及空间信息,并且只能与常用核函数相配合度量图像之间相似性的问题,该文提出一种基于空间概率乘积核函数的图像分类(SPPKBIG)算法。使用Parzen窗方法估计编码矢量所服从的概率密度分布,用来描述图像内容,使用空间概率乘积核函数构建图像之间的核矩阵,最后使用基于此核矩阵的支持向量机对图像进行分类。实验结果表明,SPPKBIC算法对15类场景数据集和MSRcv2数据集的平均分类正确率分别为84.1%和94.8%。 展开更多
关键词 空间概率乘积核函数 图像分类 词袋 统计聚集算法 统计特征信息 空间信息 Parzen窗方法 概率密度分布 核矩阵 支持向量机
下载PDF
Prestack seismic stochastic inversion based on statistical characteristic parameters 被引量:3
2
作者 Wang Bao-Li Lin Ying +1 位作者 Zhang Guang-Zhi Yin Xing-Yao 《Applied Geophysics》 SCIE CSCD 2021年第1期63-74,129,共13页
In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is ... In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is difficult.In this paper,multiple parameters are used to fully explore the underground formation information in the known seismic reflection and well log data.The spatial structure characteristics of complex underground reservoirs are described more comprehensively using multiple statistical characteristic parameters.We propose a prestack seismic stochastic inversion method based on prior information on statistical characteristic parameters.According to the random medium theory,this method obtains several statistical characteristic parameters from known seismic and logging data,constructs a prior information model that meets the spatial structure characteristics of the underground strata,and integrates multiparameter constraints into the likelihood function to construct the objective function.The very fast quantum annealing algorithm is used to optimize and update the objective function to obtain the fi nal inversion result.The model test shows that compared with the traditional prior information model construction method,the prior information model based on multiple parameters in this paper contains more detailed stratigraphic information,which can better describe complex underground reservoirs.A real data analysis shows that the stochastic inversion method proposed in this paper can effectively predict the geophysical characteristics of complex underground reservoirs and has a high resolution. 展开更多
关键词 prior information random medium theory statistical characteristic parameters stochastic inversion very fast quantum annealing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部