The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but m...The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2 statistic and squared prediction error SVE statistic and reduce missed detection rates. T2 statistic can be used to measure the variation di rectly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2 statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly.展开更多
针对核主元分析(Kernel Principal Component Analysis,KPCA)模型所产生的对角矩阵包含原始数据信息,且能够反映数据的特征,提出一种基于特征值变化的工业过程实时故障检测方法。因滑动窗口在收集数据建模时会出现故障数据被正常数据覆...针对核主元分析(Kernel Principal Component Analysis,KPCA)模型所产生的对角矩阵包含原始数据信息,且能够反映数据的特征,提出一种基于特征值变化的工业过程实时故障检测方法。因滑动窗口在收集数据建模时会出现故障数据被正常数据覆盖的现象,故采用实时数据和正常数据相结合的组合滑动窗口策略收集数据建立KPCA模型。通过KPCA模型所产生特征值的信息变化构造新的监测统计量,即数据发生故障时,变量值超出原来的范围,特征值会变大,利用这一变化规律构造监控统计量。将统计数据与置信限进行比较,从而对样本状态进行监视。通过数值例子和田纳西-伊斯曼过程的仿真实验,结果表明与其他的方法进行比较,该方法在过程故障检测中提高故障检测率,降低误报率。展开更多
Conventional principal component analysis(PCA) can obtain low-dimensional representations of original data space, but the selection of principal components(PCs) based on variance is subjective, which may lead to infor...Conventional principal component analysis(PCA) can obtain low-dimensional representations of original data space, but the selection of principal components(PCs) based on variance is subjective, which may lead to information loss and poor monitoring performance. To address dimension reduction and information preservation simultaneously, this paper proposes a novel PC selection scheme named full variable expression. On the basis of the proposed relevance of variables with each principal component, key principal components can be determined.All the key principal components serve as a low-dimensional representation of the entire original variables, preserving the information of original data space without information loss. A squared Mahalanobis distance, which is introduced as the monitoring statistic, is calculated directly in the key principal component space for fault detection. To test the modeling and monitoring performance of the proposed method, a numerical example and the Tennessee Eastman benchmark are used.展开更多
基金Supported by the 973 project of China (2013CB733600), the National Natural Science Foundation (21176073), the Doctoral Fund of Ministry of Education (20090074110005), the New Century Excellent Talents in University (NCET-09-0346), "Shu Guang" project (09SG29) and the Fundamental Research Funds for the Central Universities.
文摘The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2 statistic and squared prediction error SVE statistic and reduce missed detection rates. T2 statistic can be used to measure the variation di rectly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2 statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly.
文摘针对核主元分析(Kernel Principal Component Analysis,KPCA)模型所产生的对角矩阵包含原始数据信息,且能够反映数据的特征,提出一种基于特征值变化的工业过程实时故障检测方法。因滑动窗口在收集数据建模时会出现故障数据被正常数据覆盖的现象,故采用实时数据和正常数据相结合的组合滑动窗口策略收集数据建立KPCA模型。通过KPCA模型所产生特征值的信息变化构造新的监测统计量,即数据发生故障时,变量值超出原来的范围,特征值会变大,利用这一变化规律构造监控统计量。将统计数据与置信限进行比较,从而对样本状态进行监视。通过数值例子和田纳西-伊斯曼过程的仿真实验,结果表明与其他的方法进行比较,该方法在过程故障检测中提高故障检测率,降低误报率。
基金Supported by the National Natural Science Foundation of China(No.61374140)Shanghai Pujiang Program(Project No.12PJ1402200)
文摘Conventional principal component analysis(PCA) can obtain low-dimensional representations of original data space, but the selection of principal components(PCs) based on variance is subjective, which may lead to information loss and poor monitoring performance. To address dimension reduction and information preservation simultaneously, this paper proposes a novel PC selection scheme named full variable expression. On the basis of the proposed relevance of variables with each principal component, key principal components can be determined.All the key principal components serve as a low-dimensional representation of the entire original variables, preserving the information of original data space without information loss. A squared Mahalanobis distance, which is introduced as the monitoring statistic, is calculated directly in the key principal component space for fault detection. To test the modeling and monitoring performance of the proposed method, a numerical example and the Tennessee Eastman benchmark are used.