Based on a synthesis of zircon inheritance from Mesozoic igneous rocks in the eastern portion of the North China Craton (NCC) , it is proposed that inherited zircons with Neoproterozoie ages identified from these ro...Based on a synthesis of zircon inheritance from Mesozoic igneous rocks in the eastern portion of the North China Craton (NCC) , it is proposed that inherited zircons with Neoproterozoie ages identified from these rocks are of a heterogenous derivation from the Yangtze/South China block, rather than from the NCC itself. The mechanism that introduces these zircons incorporated into the NCC is likely by tectonic underplating during the Triassic continental subduction of the Yangtze block beneath the NCC. Tectonic addition of abundant crustal materials represented by the heterogenous zircons into the NCC, probably along Moho or weak interfaces within the NCC's crust, led to the crustal thickening in the NCC. These heterogenous materials, either as (partial) source rocks or as contaminants of the magmas generated during an extension environment following the crustal thickening, were reworked and therefore have significant contribution to petrogenesis of the Mesozoic igneous rocks. The crustal thickening resulted from the tectonic underplating, as indicated by the distribution extent of the heterogenous zircons, is spatially similar to that of the lithospheric thinning, with both mainly occurring in the eastern segment of the NCC. This is probably suggestive of an intrinsic relation between the thickening and thinning events during the Mesozoic evolution of the NCC.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No.40773025)the Ministry of Science and Technology of China (Grant No.2006CB403504)
文摘Based on a synthesis of zircon inheritance from Mesozoic igneous rocks in the eastern portion of the North China Craton (NCC) , it is proposed that inherited zircons with Neoproterozoie ages identified from these rocks are of a heterogenous derivation from the Yangtze/South China block, rather than from the NCC itself. The mechanism that introduces these zircons incorporated into the NCC is likely by tectonic underplating during the Triassic continental subduction of the Yangtze block beneath the NCC. Tectonic addition of abundant crustal materials represented by the heterogenous zircons into the NCC, probably along Moho or weak interfaces within the NCC's crust, led to the crustal thickening in the NCC. These heterogenous materials, either as (partial) source rocks or as contaminants of the magmas generated during an extension environment following the crustal thickening, were reworked and therefore have significant contribution to petrogenesis of the Mesozoic igneous rocks. The crustal thickening resulted from the tectonic underplating, as indicated by the distribution extent of the heterogenous zircons, is spatially similar to that of the lithospheric thinning, with both mainly occurring in the eastern segment of the NCC. This is probably suggestive of an intrinsic relation between the thickening and thinning events during the Mesozoic evolution of the NCC.