A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the correspondingsystem of ...A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the correspondingsystem of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2+1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.展开更多
Based on the Weierstrass elliptic function equation, a new Weierstrass semi-rational expansion method and its algorithm are presented. The main idea of the method changes the problem solving soliton equations into ano...Based on the Weierstrass elliptic function equation, a new Weierstrass semi-rational expansion method and its algorithm are presented. The main idea of the method changes the problem solving soliton equations into another one solving the corresponding set of nonlinear algebraic equations. With the aid of Maple, we choose the modified KdV equation, (2+ 1)-dimensional KP equation, and (3+1)-dimensional Jimbo-Miwa equation to illustrate our algorithm. As a consequence, many types of new doubly periodic solutions are obtained in terms of the Weierstrass elliptic function.Moreover the corresponding new Jacobi elliptic function solutions and solitary wave solutions are also presented as simple limits of doubly periodic solutions.展开更多
Making use of a new and more general ansatz, we present the generalized algebraic method to uniformlyconstruct a series of new and general travelling wave solution for nonlinear partial differential equations. As an a...Making use of a new and more general ansatz, we present the generalized algebraic method to uniformlyconstruct a series of new and general travelling wave solution for nonlinear partial differential equations. As an applicationof the method, we choose a (1+1)-dimensional dispersive long wave equation to illustrate the method. As a result, wecan successfully obtain the solutions found by the method proposed by Fan [E. Fan, Comput. Phys. Commun. 153 (2003)17] and find other new and more general solutions at the same time, which include polynomial solutions, exponentialsolutions, rational solutions, triangular periodic wave solutions, hyperbolic and soliton solutions, Jacobi and Weierstrassdoubly periodic wave solutions.展开更多
文摘A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the correspondingsystem of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2+1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.
基金National Key Basic Research Project of China under,国家自然科学基金,教育部留学回国人员科研启动基金
文摘Based on the Weierstrass elliptic function equation, a new Weierstrass semi-rational expansion method and its algorithm are presented. The main idea of the method changes the problem solving soliton equations into another one solving the corresponding set of nonlinear algebraic equations. With the aid of Maple, we choose the modified KdV equation, (2+ 1)-dimensional KP equation, and (3+1)-dimensional Jimbo-Miwa equation to illustrate our algorithm. As a consequence, many types of new doubly periodic solutions are obtained in terms of the Weierstrass elliptic function.Moreover the corresponding new Jacobi elliptic function solutions and solitary wave solutions are also presented as simple limits of doubly periodic solutions.
文摘Making use of a new and more general ansatz, we present the generalized algebraic method to uniformlyconstruct a series of new and general travelling wave solution for nonlinear partial differential equations. As an applicationof the method, we choose a (1+1)-dimensional dispersive long wave equation to illustrate the method. As a result, wecan successfully obtain the solutions found by the method proposed by Fan [E. Fan, Comput. Phys. Commun. 153 (2003)17] and find other new and more general solutions at the same time, which include polynomial solutions, exponentialsolutions, rational solutions, triangular periodic wave solutions, hyperbolic and soliton solutions, Jacobi and Weierstrassdoubly periodic wave solutions.