In order to alleviate urban traffic congestion and provide fast vehicle paths,a hidden Markov model(HMM)based on multi-feature data of urban regional roads is constructed to solve the problems of low recognition rate ...In order to alleviate urban traffic congestion and provide fast vehicle paths,a hidden Markov model(HMM)based on multi-feature data of urban regional roads is constructed to solve the problems of low recognition rate and poor instability of traditional model algorithms.At first,the HHM is obtained by training.Then according to dynamic planning principle,the traffic states of intersections are obtained by the Viterbi algorithm.Finally,the optimal path is selected based on the obtained traffic states of intersections.The experiment results show that the proposed method is superior to other algorithms in road unobstruction rate and recognition rate under complex road conditions.展开更多
基金Natural Science Foundation of Gansu Provincial Science&Technology Department(No.1504GKCA018)。
文摘In order to alleviate urban traffic congestion and provide fast vehicle paths,a hidden Markov model(HMM)based on multi-feature data of urban regional roads is constructed to solve the problems of low recognition rate and poor instability of traditional model algorithms.At first,the HHM is obtained by training.Then according to dynamic planning principle,the traffic states of intersections are obtained by the Viterbi algorithm.Finally,the optimal path is selected based on the obtained traffic states of intersections.The experiment results show that the proposed method is superior to other algorithms in road unobstruction rate and recognition rate under complex road conditions.