The production of?-valerolactone(GVL)from lignocellulosic biomass has become a focus of research owing to its potential applications in fuels and chemicals.In this study,(n)CuOx-CaCO3(where n is the molar ratio of Cu ...The production of?-valerolactone(GVL)from lignocellulosic biomass has become a focus of research owing to its potential applications in fuels and chemicals.In this study,(n)CuOx-CaCO3(where n is the molar ratio of Cu to Ca)compounds were prepared for the first time and shown to function as efficient bifunctional catalysts for the conversion of biomass-derived methyl levulinate(ML)into GVL,using methanol as the in-situ hydrogen source.Among the catalysts with varied Cu/Ca molar ratios,(3/2)CuOx-CaCO3 provided the highest GVL yield of 95.6% from ML.The incorporation of CaCO3 with CuO resulted in the formation of Cu+species in a CuOx-CaCO3 catalyst,which greatly facilitated the hydrogenation of ML.Notably,CuOx-CaCO3 also displayed excellent catalytic performance in the methanolysis products of cellulose,even in the presence of humins.Therefore,a facile two-step strategy for the production of GVL from cellulose could be developed over this robust and inexpensive catalyst,through the integration of cellulose methanolysis catalyzed by sulfuric acid,methanol reforming,and ML hydrogenation in methanol medium.展开更多
A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydrogenation. Various factors that affect the activity of the catalyst, including the reaction temperature, pressure and spac...A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydrogenation. Various factors that affect the activity of the catalyst, including the reaction temperature, pressure and space velocity, were investigated. The kinetic parameters in Graaf's kinetic model for methanol synthesis were obtalned. A quasi-stable economical process for CO2 hydrogenation through CO circulation was simulated and higher methanol yield was obtained.展开更多
A novel Pt@ZnO nanorod/carbon fiber (NR/CF) with hierarchical structure was prepared by atomic layer deposition combined with hydrothermal synthesis and magnetron sputtering (MS). The morphology of Pt changes from...A novel Pt@ZnO nanorod/carbon fiber (NR/CF) with hierarchical structure was prepared by atomic layer deposition combined with hydrothermal synthesis and magnetron sputtering (MS). The morphology of Pt changes from nanoparticle to nanorod bundle with controlled thickness of Pt between 10 and 50 nm. Significantly, with the increase of voltage from 0 to 0.6 V (vs. standard calomel electrode), the prompt photocurrent generated on ZnO NR/CF increases from 0235 to 0.725 mA. Besides, the Pt@ZnO NR/CF exhibited higher electrochemical active surface area (ECSA) value, better methanol oxidation ability and CO tolerance than Pt@CF, which demonstrated the importance of the multifunctional ZnO support. As the thickness of Pt increasing from 10 to 50 rim, the ECSA values were improved proportionally, leading to the improvement of methanol oxidation ability. More importantly, UV radiation increased the density of peak current of Pt@ZnO NR/CF towards methanol oxidation by additional 42.4%, which may be due to the synergy catalysis of UV light and electricity.展开更多
Peucedanum aucheri Boiss. (Apiaceae) is a herbaceous wild plant native to Iran and is used in Iranian folk medicine as a diuretic and for the treatment of kidney disorders. Phytochemical investigation of different e...Peucedanum aucheri Boiss. (Apiaceae) is a herbaceous wild plant native to Iran and is used in Iranian folk medicine as a diuretic and for the treatment of kidney disorders. Phytochemical investigation of different extracts prepared from the aerial part of P. aucheri Boiss. resulted to the isolation of two main flavonol glycosides from methanolic extract. Using comprehensive spectroscopic methods, including 1D and 2D nuclear magnetic resonance (NMR) spectroscopy and mass spectroscopy, chemical structure of isolated compounds were determined as kaempfrol-3-o-rutinoside (nicotiflorin) and isorhamnetin-3-o-rutinoside (narcissin). Although narcissin has previously been isolated from P. ruthenicum, to the best of our knowledge, isolation of nicotiflorin from Peucedanum genus is reported for the first time.展开更多
The effects of different treatments, such as dry heat,wet heat, solvent vapor and ultrasonic, on propertiesof the cyclic oligomers on the surface of polyester fiberare studied. The components of surface oligomers area...The effects of different treatments, such as dry heat,wet heat, solvent vapor and ultrasonic, on propertiesof the cyclic oligomers on the surface of polyester fiberare studied. The components of surface oligomers areanalyzed through Thin-Layer Chromatograph. Theresult shows that: all of the treatment, especially solvent vapor treatment,call significantly increase the content of surface cyclic oligomers.The content of cyclic triIner is increased more considerably than other oligomers. Moreover,the morphology and thedistribution of surface cyclic oligomers are also different from different treatments:Dry heat and wet heat cause larger polygonal solids distributed evenly on the surface of fiber;solvent vapor nlakes fiber surface exhibit irregular rodlike crystal shapes randomly;ultrasonic treatment induces some obscureand smaller deposi^on the surface of fiber.展开更多
The intrinsic kinetic models of the Langmuir-Hinshelwood type were investigated in terms of the reaction rates of CO hydrogenation and CO_2 hydrogenation in theform of reactant fugacity. The parameters were estimated ...The intrinsic kinetic models of the Langmuir-Hinshelwood type were investigated in terms of the reaction rates of CO hydrogenation and CO_2 hydrogenation in theform of reactant fugacity. The parameters were estimated by the Universal Global Optimization using the Marquardt method. Residual error distribution and statistic tests show thatthe intrinsic kinetic models are reliable and acceptable. The mathematic model of a combined converter formed by gas-cooled and water-cooled reactor was developed and thegas-cooled reactor and the water-cooled reactor were characterized with one-dimensionalmathematic model. The distributions of temperature and concentration in the catalytic bedof the gas-cooled reactor and the water-cooled reactor in a combined converter with ayield of 1.2 Mt/a were simulated. The parallel cross linking pore model was used to describe the transfer process of multi-component diffusion system in the catalyst. The calculated value computed by the internal diffusion efficiency factor calculation model established for methanol synthesis catalyst fit the experimental value very well.展开更多
Hydroxyapatite(HA) based materials have been widely used in the field of ligament tissue engineering in the past decades.It has been previously reported that HA can increase the penetration of marrow-derived mesenchym...Hydroxyapatite(HA) based materials have been widely used in the field of ligament tissue engineering in the past decades.It has been previously reported that HA can increase the penetration of marrow-derived mesenchymal stem cells(MSCs) and MSCs cells into scaffolds due to increased cell differentiation in biological media.Additionally,it was found that there are much difference between MSCs and anterior cruciate ligament (ACL) cells.For that reason,we mainly evaluate the biocompatibility of polyethylene terephthalate(PET) silk scaffold with fibroblasts cells in vitro.We cultured mouse fibroblasts cells on the substrate of PET fiber and PET-HA scaffold,respectively,and then observed the morphology by using scanning electron microscopy.Our data indicate that PET-HA scaffold has good biocompatibility with fibroblasts cells and can potentially be useful in enhancing the fibroblasts cell differentiation and proliferation.展开更多
基金supported by the National Natural Science Foundation of China(21676223,21706223,21776234,21606188)the Fundamental Research Funds for the Central Universities(20720180084),the Energy development Foundation of Energy College,Xiamen University(2017NYFZ02)+1 种基金the Natural Science Foundation of Fujian Province of China(2018J01017)the Education Department of Fujian Province(JZ160398)~~
文摘The production of?-valerolactone(GVL)from lignocellulosic biomass has become a focus of research owing to its potential applications in fuels and chemicals.In this study,(n)CuOx-CaCO3(where n is the molar ratio of Cu to Ca)compounds were prepared for the first time and shown to function as efficient bifunctional catalysts for the conversion of biomass-derived methyl levulinate(ML)into GVL,using methanol as the in-situ hydrogen source.Among the catalysts with varied Cu/Ca molar ratios,(3/2)CuOx-CaCO3 provided the highest GVL yield of 95.6% from ML.The incorporation of CaCO3 with CuO resulted in the formation of Cu+species in a CuOx-CaCO3 catalyst,which greatly facilitated the hydrogenation of ML.Notably,CuOx-CaCO3 also displayed excellent catalytic performance in the methanolysis products of cellulose,even in the presence of humins.Therefore,a facile two-step strategy for the production of GVL from cellulose could be developed over this robust and inexpensive catalyst,through the integration of cellulose methanolysis catalyzed by sulfuric acid,methanol reforming,and ML hydrogenation in methanol medium.
基金Supported by the National Natural Science Foundation of China (20576060, 20606021), and the Specialized Research Fund for the Doctoral Program of Higher Education (20050003030).
文摘A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydrogenation. Various factors that affect the activity of the catalyst, including the reaction temperature, pressure and space velocity, were investigated. The kinetic parameters in Graaf's kinetic model for methanol synthesis were obtalned. A quasi-stable economical process for CO2 hydrogenation through CO circulation was simulated and higher methanol yield was obtained.
基金Supported by the National Key R&D Program(2016YFC0204000)the National Natural Science Foundation of China(U1510202)+1 种基金the Jiangsu Province Scientific Supporting Project(BK20170046and BE2015023)
文摘A novel Pt@ZnO nanorod/carbon fiber (NR/CF) with hierarchical structure was prepared by atomic layer deposition combined with hydrothermal synthesis and magnetron sputtering (MS). The morphology of Pt changes from nanoparticle to nanorod bundle with controlled thickness of Pt between 10 and 50 nm. Significantly, with the increase of voltage from 0 to 0.6 V (vs. standard calomel electrode), the prompt photocurrent generated on ZnO NR/CF increases from 0235 to 0.725 mA. Besides, the Pt@ZnO NR/CF exhibited higher electrochemical active surface area (ECSA) value, better methanol oxidation ability and CO tolerance than Pt@CF, which demonstrated the importance of the multifunctional ZnO support. As the thickness of Pt increasing from 10 to 50 rim, the ECSA values were improved proportionally, leading to the improvement of methanol oxidation ability. More importantly, UV radiation increased the density of peak current of Pt@ZnO NR/CF towards methanol oxidation by additional 42.4%, which may be due to the synergy catalysis of UV light and electricity.
文摘Peucedanum aucheri Boiss. (Apiaceae) is a herbaceous wild plant native to Iran and is used in Iranian folk medicine as a diuretic and for the treatment of kidney disorders. Phytochemical investigation of different extracts prepared from the aerial part of P. aucheri Boiss. resulted to the isolation of two main flavonol glycosides from methanolic extract. Using comprehensive spectroscopic methods, including 1D and 2D nuclear magnetic resonance (NMR) spectroscopy and mass spectroscopy, chemical structure of isolated compounds were determined as kaempfrol-3-o-rutinoside (nicotiflorin) and isorhamnetin-3-o-rutinoside (narcissin). Although narcissin has previously been isolated from P. ruthenicum, to the best of our knowledge, isolation of nicotiflorin from Peucedanum genus is reported for the first time.
文摘The effects of different treatments, such as dry heat,wet heat, solvent vapor and ultrasonic, on propertiesof the cyclic oligomers on the surface of polyester fiberare studied. The components of surface oligomers areanalyzed through Thin-Layer Chromatograph. Theresult shows that: all of the treatment, especially solvent vapor treatment,call significantly increase the content of surface cyclic oligomers.The content of cyclic triIner is increased more considerably than other oligomers. Moreover,the morphology and thedistribution of surface cyclic oligomers are also different from different treatments:Dry heat and wet heat cause larger polygonal solids distributed evenly on the surface of fiber;solvent vapor nlakes fiber surface exhibit irregular rodlike crystal shapes randomly;ultrasonic treatment induces some obscureand smaller deposi^on the surface of fiber.
基金Supported by the National Science & Technology Support Project Task of China(2006BAE02B02)
文摘The intrinsic kinetic models of the Langmuir-Hinshelwood type were investigated in terms of the reaction rates of CO hydrogenation and CO_2 hydrogenation in theform of reactant fugacity. The parameters were estimated by the Universal Global Optimization using the Marquardt method. Residual error distribution and statistic tests show thatthe intrinsic kinetic models are reliable and acceptable. The mathematic model of a combined converter formed by gas-cooled and water-cooled reactor was developed and thegas-cooled reactor and the water-cooled reactor were characterized with one-dimensionalmathematic model. The distributions of temperature and concentration in the catalytic bedof the gas-cooled reactor and the water-cooled reactor in a combined converter with ayield of 1.2 Mt/a were simulated. The parallel cross linking pore model was used to describe the transfer process of multi-component diffusion system in the catalyst. The calculated value computed by the internal diffusion efficiency factor calculation model established for methanol synthesis catalyst fit the experimental value very well.
基金the Young Project of National Natural Science Foundation of China(No.81000816)the National Basic Research Program(973) of China (No.2009CB930000)the Project of Shanghai Municipal Science and Technology Commission (No.11JC1401700)
文摘Hydroxyapatite(HA) based materials have been widely used in the field of ligament tissue engineering in the past decades.It has been previously reported that HA can increase the penetration of marrow-derived mesenchymal stem cells(MSCs) and MSCs cells into scaffolds due to increased cell differentiation in biological media.Additionally,it was found that there are much difference between MSCs and anterior cruciate ligament (ACL) cells.For that reason,we mainly evaluate the biocompatibility of polyethylene terephthalate(PET) silk scaffold with fibroblasts cells in vitro.We cultured mouse fibroblasts cells on the substrate of PET fiber and PET-HA scaffold,respectively,and then observed the morphology by using scanning electron microscopy.Our data indicate that PET-HA scaffold has good biocompatibility with fibroblasts cells and can potentially be useful in enhancing the fibroblasts cell differentiation and proliferation.