The performance of fuel-cell related electrocatalysis is highly dependent on the morphology,size and composition of a given catalyst.In terms of rational design of Pt-based catalyst,one-dimensional(1 D)ultrafine Pt al...The performance of fuel-cell related electrocatalysis is highly dependent on the morphology,size and composition of a given catalyst.In terms of rational design of Pt-based catalyst,one-dimensional(1 D)ultrafine Pt alloy nanowires(NWs)are considered as a commendable model for enhanced catalysis on account of their favorable mass/charge transfer and structural durability.However,in order to achieve the noble metal catalysts in higher efficiency and lower cost,building high-index facets and shaping hollow interiors should be integrated into 1 D Pt alloy NWs,which has rarely been done so far.Here,we report the first synthesis of a class of spiny Pd/PtFe core/shell nanotubes(SPCNTs)constructed by cultivating PtFe alloy branches with rich high-index facets along the 1 D removable Pd supports,which is driven by the galvanic dissolution of Pd substrates concomitant with Stranski-Krastanov(S-K)growth of Pt and Fe,for achieving highly efficient fuel-cells-related electrocatalysis.This new catalyst can even deliver electrochemical active surface area(ECSA)of 62.7 m^(2)gPt^(-1),comparable to that of commercial carbonsupported Pt nanoparticles.With respect to oxygen reduction catalysis,the SPCNTs showcase the remarkable mass and specific activity of 2.71 A mg^(-1)and 4.32 mA cm^(-2),15.9 and 16.0 times higher than those of commercial Pt/C,respectively.Also,the catalysts exhibit extraordinary resistance to the activity decay and structural degradation during 50,000 potential cycles.Moreover,the SPCNTs serve as a category of efficient and stable catalysts towards anodic alcohol oxidation.展开更多
基金the Xplorer Prize,the Beijing Natural Science Foundation(JQ18005,Z190010)the National Natural Science Foundation of China(NSFC)(51671003,and 21771156)+3 种基金National R&D Program of China(2017YFA0206701)the China Postdoctoral Science Foundation(2019M660290)the state Key Laboratory of Solidification Processing in NPU(SKLSP202004)the Start-up supports from Peking University and Young Thousand Talented Program.
文摘The performance of fuel-cell related electrocatalysis is highly dependent on the morphology,size and composition of a given catalyst.In terms of rational design of Pt-based catalyst,one-dimensional(1 D)ultrafine Pt alloy nanowires(NWs)are considered as a commendable model for enhanced catalysis on account of their favorable mass/charge transfer and structural durability.However,in order to achieve the noble metal catalysts in higher efficiency and lower cost,building high-index facets and shaping hollow interiors should be integrated into 1 D Pt alloy NWs,which has rarely been done so far.Here,we report the first synthesis of a class of spiny Pd/PtFe core/shell nanotubes(SPCNTs)constructed by cultivating PtFe alloy branches with rich high-index facets along the 1 D removable Pd supports,which is driven by the galvanic dissolution of Pd substrates concomitant with Stranski-Krastanov(S-K)growth of Pt and Fe,for achieving highly efficient fuel-cells-related electrocatalysis.This new catalyst can even deliver electrochemical active surface area(ECSA)of 62.7 m^(2)gPt^(-1),comparable to that of commercial carbonsupported Pt nanoparticles.With respect to oxygen reduction catalysis,the SPCNTs showcase the remarkable mass and specific activity of 2.71 A mg^(-1)and 4.32 mA cm^(-2),15.9 and 16.0 times higher than those of commercial Pt/C,respectively.Also,the catalysts exhibit extraordinary resistance to the activity decay and structural degradation during 50,000 potential cycles.Moreover,the SPCNTs serve as a category of efficient and stable catalysts towards anodic alcohol oxidation.