On augmentation of past work, an effective Wiener filter and its application for noise suppression combined with a formed CORDIC based FFT/IFFT processor with improved speed were executed. The pipelined methodology wa...On augmentation of past work, an effective Wiener filter and its application for noise suppression combined with a formed CORDIC based FFT/IFFT processor with improved speed were executed. The pipelined methodology was embraced for expanding the execution of the system. The proposed Wiener filter was planned in such an approach to evacuate the iteration issues in ordinary Wiener filter. The division process was supplanted by a productive inverse and multiplication process in the proposed design. An enhanced design for matrix inverse with reduced computation complexity was executed. The wide-ranging framework processing was focused around IEEE-754 standard single precision floating point numbers. The Wiener filter and the entire system design was integrated and actualized on VIRTEX 5 FPGA stage and re-enacted to approve the results in Xilinx ISE 13.4. The results show that a productive decrease in power and area is developed by adjusting the proposed technique for speech signal noise degradation with latency of n/2 clock cycles and substantial throughput result per every 12 clock cycles for n-bit precision. The execution of proposed design is exposed to be 31.35% more effective than that of prevailing strategies.展开更多
Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degrad...Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.展开更多
Cellulose nanocrystals (CNCs) of rod-like shape were prepared from degreased cotton using sulfuric acid hydrolysis. The obtained CNC suspension was neutralized using a sodium hydroxide solution to remove the...Cellulose nanocrystals (CNCs) of rod-like shape were prepared from degreased cotton using sulfuric acid hydrolysis. The obtained CNC suspension was neutralized using a sodium hydroxide solution to remove the residual sulfuric acid and improve the thermal stability of the CNC particles. Then, poly(ethylene oxide) (PEO) was employed to modify the nanocrystals through entanglement and physical adsorption. The goal was to further improve the thermal stability and weaken the hydrophilicity of CNCs. Original and modifed CNCs were dosed into a polylactic acid (PLA) matrix to prepare nanocomposites using a hot compression process. Results of the thermogravimetric analysis showed that the initial thermal decomposition temperature of the modifed CNCs showed a 120℃ improvement compared to the original CNCs. That is, the thermal stability of the modified CNCs improved because of their shielding and wrapping by a PEO layer on their surface. Results from scanning electron microscopy and ultraviolet-visible spectrophotometry showed that the compatibility of the modifed CNCs with organic PLA improved, which was attributed to the compatibility of the PEO chains adsorbed on the surface of the CNCs. Finally, the results of tensile tests indicated a significant improvement in terms of breaking strength and elongation at the break point.展开更多
Ag/ZnO nanosheet composites were prepared by zinc nitrate, sodium hydroxide and silver nitrate via a simple hydrothermal method. The crystal structure, morphology, optical property and photocatalytic performance were ...Ag/ZnO nanosheet composites were prepared by zinc nitrate, sodium hydroxide and silver nitrate via a simple hydrothermal method. The crystal structure, morphology, optical property and photocatalytic performance were studied by means of XRD, SEM, HRTEM, XPS, and PL methods. It is found that both the pure ZnO and composite Ag/ZnO samples have the same morphology of nanosheet. The interaction of spherical Ag particles with ZnO matrix in the Ag/ZnO sample leads to an increase in photocatalytic efficiency for the possible increase of concentration of surface hydroxyl and the photo-induced electrons and holes. The addition of Ag can reduce the recombination rate of photo-generated carriers and the sample with addition of 3 at% Ag to ZnO exhibits the best photocatalytic activity with the degradation rate up to 95% within 15 min.展开更多
An adaptive method of residual life estimation for deteriorated products with two performance characteristics (PCs) was proposed, which was sharply different from existing work that only utilized one-dimensional degra...An adaptive method of residual life estimation for deteriorated products with two performance characteristics (PCs) was proposed, which was sharply different from existing work that only utilized one-dimensional degradation data. Once new degradation information was available, the residual life of the product being monitored could be estimated in an adaptive manner. Here, it was assumed that the degradation of each PC over time was governed by a Wiener degradation process and the dependency between them was characterized by the Frank copula function. A bivariate Wiener process model with measurement errors was used to model the degradation measurements. A two-stage method and the Markov chain Monte Carlo (MCMC) method were combined to estimate the unknown parameters in sequence. Results from a numerical example about fatigue cracks show that the proposed method is valid as the relative error is small.展开更多
To denoise the diffusion weighted images (DWls) featured as multi-boundary, which was very important for the calculation of accurate DTIs (diffusion tensor magnetic resonance imaging), a modified Wiener filter was...To denoise the diffusion weighted images (DWls) featured as multi-boundary, which was very important for the calculation of accurate DTIs (diffusion tensor magnetic resonance imaging), a modified Wiener filter was proposed. Through analyzing the widely accepted adaptive Wiener filter in image denoising fields, which suffered from annoying noise around the edges of DWIs and in turn greatly affected the denoising effect of DWIs, a local-shift method capable of overcoming the defect of the adaptive Wiener filter was proposed to help better denoising DWIs and the modified Wiener filter was constructed accordingly. To verify the denoising effect of the proposed method, the modified Wiener filter and adaptive Wiener filter were performed on the noisy DWI data, respectively, and the results of different methods were analyzed in detail and put into comparison. The experimental data show that, with the modified Wiener method, more satisfactory results such as lower non-positive tensor percentage and lower mean square errors of the fractional anisotropy map and trace map are obtained than those with the adaptive Wiener method, which in turn helps to produce more accurate DTIs.展开更多
This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant...This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant-Block(BCCB)preconditioner is constructed.Based on thepreconditioner,a Preconditioned Multistage Wiener Filter(PMWF)which can be implemented by thePreconditioned Conjugate Gradient(PCG)method is proposed.Simulation results show that thePMWF has faster convergence rate and lower processing rank compared with the MWF.展开更多
This paper presents recent naval applications of the SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach implemented for the first time with high order fully unstructured schemes and an efficient level-...This paper presents recent naval applications of the SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach implemented for the first time with high order fully unstructured schemes and an efficient level-set method to capture free surface flows around realistic hull geometries. Numerical simulations in waves and/or viscous flows still lead generally to very large CPU times because of grid requirements to ensure a good propagation of incident waves in the meshed part of the fluid domain that makes unreachable any hull design optimization process in an industrial context. Furthermore, even if the SWENSE method clearly shows promising results in an academic context in both regular and irregular waves, the most recent publications still highlight several issues that remain unresolved up to now, e.g. poor scalability, diffusive wake pattern, non-versatile structured mesh approaches and only very few validation test cases are carried out on Wigley or DTMB 5415 hulls. In order to overcome those numerical difficulties and get an in-depth validation of the method on several cases in realistic wave conditions, a two and a half years' research project has been achieved involving several steps, starting by a set of dedicated model test experiments later used as reference for the validation of the method. The CFD commercial code ANANASTM used and developed in this research program is presented and validated in detail. The use of high order schemes on unstructured grids in combination with these SWENSE method and level-set approach offer to the maritime industry an innovative and state of the art method to achieve unequaled accuracy, low computation time and some unique advantages such as, amongst others, the end of the numerical wave propagation problems. The results of the validation were pleasing and can be considered as acceptable in general, with some challenges remaining to the solyed. Results obtained indicate that an optimization processes in waves in realistic conditions is now affordable in an industrial context.展开更多
This paper proposes an objective Bayesian method to study the degradation model with respect to a Wiener process.The Jeffreys prior and reference prior for the parameters are derived,and the propriety of the posterior...This paper proposes an objective Bayesian method to study the degradation model with respect to a Wiener process.The Jeffreys prior and reference prior for the parameters are derived,and the propriety of the posteriors under these priors is validated.Two sampling algorithms are introduced to compute the posteriors.A simulation study is conducted to investigate the performance of the objective Bayesian procedure.Finally,the authors apply the approach to a degradation data.展开更多
Photodynamic therapy (PDT), which is a procedure that uses photosensitizing drug to apply therapy selectively to target sites, has been proven to be a safe treatment for cancers and conditions that may develop into ...Photodynamic therapy (PDT), which is a procedure that uses photosensitizing drug to apply therapy selectively to target sites, has been proven to be a safe treatment for cancers and conditions that may develop into cancers. Nano-sized TiO2 has been regarded as potential photosensitizer for UV light driven PDT. In this study, four types of TiO2 nanofibers were prepared from proton tri-titanate (H2T3O7) nanofiber. The as-obtained nanofibers were demonstrated as efficient photosensitizers for PDT killing of HeLa cells. MTT assay and flow cytometry (FCM) were carried out to evaluate the biocompatibility, percentage of apoptotic cells, and cell viability. The non-cytotoxicity of the as-prepared TiO2 nanofibers in the absence of UV irradiation has also been demonstrated. Under UV light irradiation, the TiO2 nanofibers, particularly the mixed phase nanofibers, displayed much higher cell-killing efficiency than Pirarubicin (THP), which is a common drug to induce the apoptosis of HeLa cells. We ascribe the high cell- killing efficiency of the mixed phase nanofibers to the bandgap edge match and stable interface between TiO2(B) and anatase phases in a single nanofiber, which can inhibit the recombination of the photogenerated electrons and holes. This promotes the charge separation and transfer processes and can produce more reactive oxygen species (ROS) that are responsible for the killing of HeLa cells.展开更多
The controlled synthesis of gold nanocrystals has been the subject of intensive studies for decades because the properties and functions of gold nanomaterials are highly dependent on their particle size, shape, and di...The controlled synthesis of gold nanocrystals has been the subject of intensive studies for decades because the properties and functions of gold nanomaterials are highly dependent on their particle size, shape, and dimensionality. Especially, anisotropic gold nanocrystals, such as nanowires, nanobelts, nanoplates and nanosheets, have attracted much attention due to their striking properties and promising applications in electronics, catalysis, photonics, sensing and biomedicine. In this review, we will summarize the recent developments of one- dimensional (1D) and two-dimensional (2D) gold nanostructures. Various kinds of synthetic methods for preparation of these 1D and 2D gold nanocrystals will be described. Moreover, we will also briefly introduce the properties and potential applications of these 1D and 2D gold nanocrystals.展开更多
The paper describes the results of the electron-beam initiation of the combustion in the mixtures of hydrogen,natural gas or kerosene vapors with air.Electron beam characteristics were studied in closed volume with im...The paper describes the results of the electron-beam initiation of the combustion in the mixtures of hydrogen,natural gas or kerosene vapors with air.Electron beam characteristics were studied in closed volume with immobile gas.The researches included definition of an integrated current of an electronic beam,distribution of a current density and an estimation of average energy of electrons.Possibility of fuel mixtures ignition by means of this approach in the combustor at high velocity at the entrance was demonstrated.Experiments were carried out at Mach numbers of 4 and 5.Process of ignition and combustion under electron beam action was researched.It was revealed that ignition of mixture occurs after completion of electron gun operation.Data obtained have confirmed effectiveness of electron beam application for ignition of hydrogen and natural gas.The numerical simulation of the combustion of mixture in channel was carried out by means of ANSYS CFD 12.0 instrumentation on the basis of Reynolds averaged Navier-Stokes equation using SST/k-ωturbulence model.For combustion modeling,a detailed kinetic scheme with 38 reactions of 8 species was implemented taking into account finite rate chemistry.Computations have shown that the developed model allow to predict ignition of a mixture and flame propagation even at low flow temperatures.展开更多
Iron oxides, including α-Fe2O3, γ-Fe2O3, Fe3O4, etc. are one of the most widely investigated materials for their fundamental properties and potential applications. One-dimensional (1-D) iron oxides nanostructures ...Iron oxides, including α-Fe2O3, γ-Fe2O3, Fe3O4, etc. are one of the most widely investigated materials for their fundamental properties and potential applications. One-dimensional (1-D) iron oxides nanostructures are the focus of recent research activi- ties because of their wide applications in magnetic refrigeration, information storage, electronics, catalysts, Li-ion battery, pigment, gas sensors, etc. This review covers the recent progress in the synthesis, properties and applications of 1-D iron oxides nanostructures. The paper begins with the introduction to 1-D iron oxides nanostructures, followed by the typical synthetic methods developed for the synthesis of 1-D iron oxides nanostructures. Then, the typical 1-D iron oxides nanostructures, in- cluding nanowires/nanorods, nanotubes, nanobelts, nanochalns, and special 3-D structures built on 1-D building blocks, are introduced in detail. The properties of 1-D iron oxides nanostructures are then discussed, focusing on the magnetic, gas sensing, and electrochemical and photocatalytic properties. Finally, we draw conclusions and look at the prospects of 1-D iron oxides nanostructures.展开更多
This paper describes a full waveform sampling LiDAR system applying stripe principle. A kind of denoising method based on edge detection of original stripe signal is proposed. This method is compared with other denois...This paper describes a full waveform sampling LiDAR system applying stripe principle. A kind of denoising method based on edge detection of original stripe signal is proposed. This method is compared with other denoising methods, such as Wiener filtering, mean filtering and median filtering. It is found that the proposed denoising method is much more effective for dealing with the waveform signals.展开更多
The xonotlite fibers were synthesized via the hydrothermal synthesis method with CaO and SiO_2 as the raw materials and the molar ratio of Si/Ca of 1.0. Effect of anions from various calcium sources on the microstruct...The xonotlite fibers were synthesized via the hydrothermal synthesis method with CaO and SiO_2 as the raw materials and the molar ratio of Si/Ca of 1.0. Effect of anions from various calcium sources on the microstructure of the xonotlite fibers is studied in this paper. These obtained products were characterized by X-ray diffraction(XRD), transmission electron microscope(TEM) and scanning electron microscope(SEM) techniques to investigate their crystalline phase, crystal structure and morphology. The results indicate that anion from various calcium sources has little influence on the crystalline phases of xonotlite fibers but poses a great impact on their morphologies. Xonotlite fibers with single crystal characteristics and large aspect ratio of 50—100 were successfully fabricated from CaCl_2 as calcium material at 225 °C for 15 h. The existence of Cl-anion in the CaO-SiO_2-H_2O system significantly contributes to the formation of xonotlite crystal.展开更多
Electrospinning is firstly used to one-pot synthesis of Li3VO4@C nanofibers in a large scale. Although with the presence of organic sources in synthesis process, the pure phase Li3VO4 with superior nanofibrous morphol...Electrospinning is firstly used to one-pot synthesis of Li3VO4@C nanofibers in a large scale. Although with the presence of organic sources in synthesis process, the pure phase Li3VO4 with superior nanofibrous morphology is still successfully obtained through adjusting different heat treatment processes and different vanadium sources. The prepared Li3VO4@C nanofibers exhibit a unique structure in which nanosized Li3VO4 particles are uniformly embedded in amorphous carbon matrix. Compared with LiBVO4/C powder, Li3VO4@C nanofibers display enhanced reversible capacity of 451 mAhg^-1 at 40mAg^-1 with an increased initial coulombic efficiency of 82.3%, and the capacity can remain at 394 mAh g ^-1 after 100 cycles. This superior electrochemical performance can be attributed to its unique structure which ensures a high reactivity by nanosized Li3VO4, more stable electrode/electrolyte interface by carbon encapsulation, improved electronic conductivity and buffered volume changes by flexible carbon matrix. The electrospinning technology provides an effective method to obtain high performance Li3VO4 as a promising anode material for lithium-ion batteries.展开更多
文摘On augmentation of past work, an effective Wiener filter and its application for noise suppression combined with a formed CORDIC based FFT/IFFT processor with improved speed were executed. The pipelined methodology was embraced for expanding the execution of the system. The proposed Wiener filter was planned in such an approach to evacuate the iteration issues in ordinary Wiener filter. The division process was supplanted by a productive inverse and multiplication process in the proposed design. An enhanced design for matrix inverse with reduced computation complexity was executed. The wide-ranging framework processing was focused around IEEE-754 standard single precision floating point numbers. The Wiener filter and the entire system design was integrated and actualized on VIRTEX 5 FPGA stage and re-enacted to approve the results in Xilinx ISE 13.4. The results show that a productive decrease in power and area is developed by adjusting the proposed technique for speech signal noise degradation with latency of n/2 clock cycles and substantial throughput result per every 12 clock cycles for n-bit precision. The execution of proposed design is exposed to be 31.35% more effective than that of prevailing strategies.
基金Projects(51475462,61374138,61370031)supported by the National Natural Science Foundation of China
文摘Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.
基金the National Natural Science Foundation of China (grant Nos. 31570578 and 31270632)the Fundamental Research Funds for the Central Universities (grant No. JUSRP51622A)the State Key Laboratory of Pulp and Paper Engineering (grant No. 201809)
文摘Cellulose nanocrystals (CNCs) of rod-like shape were prepared from degreased cotton using sulfuric acid hydrolysis. The obtained CNC suspension was neutralized using a sodium hydroxide solution to remove the residual sulfuric acid and improve the thermal stability of the CNC particles. Then, poly(ethylene oxide) (PEO) was employed to modify the nanocrystals through entanglement and physical adsorption. The goal was to further improve the thermal stability and weaken the hydrophilicity of CNCs. Original and modifed CNCs were dosed into a polylactic acid (PLA) matrix to prepare nanocomposites using a hot compression process. Results of the thermogravimetric analysis showed that the initial thermal decomposition temperature of the modifed CNCs showed a 120℃ improvement compared to the original CNCs. That is, the thermal stability of the modified CNCs improved because of their shielding and wrapping by a PEO layer on their surface. Results from scanning electron microscopy and ultraviolet-visible spectrophotometry showed that the compatibility of the modifed CNCs with organic PLA improved, which was attributed to the compatibility of the PEO chains adsorbed on the surface of the CNCs. Finally, the results of tensile tests indicated a significant improvement in terms of breaking strength and elongation at the break point.
基金Project(21373273)supported by the National Natural Science Foundation of ChinaProject(2019CG033)supported by the Deepening Reform Project of Innovation and Entrepreneurship Education of Central South University,China+1 种基金Project(2019JG067)supported by the Graduate Education and Teaching Reform Research Project of Central South University,ChinaProject(201810533278)supported by the National College Students’ Innovative Experiment Project of Central South University,China
文摘Ag/ZnO nanosheet composites were prepared by zinc nitrate, sodium hydroxide and silver nitrate via a simple hydrothermal method. The crystal structure, morphology, optical property and photocatalytic performance were studied by means of XRD, SEM, HRTEM, XPS, and PL methods. It is found that both the pure ZnO and composite Ag/ZnO samples have the same morphology of nanosheet. The interaction of spherical Ag particles with ZnO matrix in the Ag/ZnO sample leads to an increase in photocatalytic efficiency for the possible increase of concentration of surface hydroxyl and the photo-induced electrons and holes. The addition of Ag can reduce the recombination rate of photo-generated carriers and the sample with addition of 3 at% Ag to ZnO exhibits the best photocatalytic activity with the degradation rate up to 95% within 15 min.
基金Project(60904002)supported by the National Natural Science Foundation of China
文摘An adaptive method of residual life estimation for deteriorated products with two performance characteristics (PCs) was proposed, which was sharply different from existing work that only utilized one-dimensional degradation data. Once new degradation information was available, the residual life of the product being monitored could be estimated in an adaptive manner. Here, it was assumed that the degradation of each PC over time was governed by a Wiener degradation process and the dependency between them was characterized by the Frank copula function. A bivariate Wiener process model with measurement errors was used to model the degradation measurements. A two-stage method and the Markov chain Monte Carlo (MCMC) method were combined to estimate the unknown parameters in sequence. Results from a numerical example about fatigue cracks show that the proposed method is valid as the relative error is small.
基金Project(2009AA04Z214) supported by the National High Technology Research and Development Program of ChinaProject(07JJ6133) supported by the Natural Science Foundation of Hunan Province, China
文摘To denoise the diffusion weighted images (DWls) featured as multi-boundary, which was very important for the calculation of accurate DTIs (diffusion tensor magnetic resonance imaging), a modified Wiener filter was proposed. Through analyzing the widely accepted adaptive Wiener filter in image denoising fields, which suffered from annoying noise around the edges of DWIs and in turn greatly affected the denoising effect of DWIs, a local-shift method capable of overcoming the defect of the adaptive Wiener filter was proposed to help better denoising DWIs and the modified Wiener filter was constructed accordingly. To verify the denoising effect of the proposed method, the modified Wiener filter and adaptive Wiener filter were performed on the noisy DWI data, respectively, and the results of different methods were analyzed in detail and put into comparison. The experimental data show that, with the modified Wiener method, more satisfactory results such as lower non-positive tensor percentage and lower mean square errors of the fractional anisotropy map and trace map are obtained than those with the adaptive Wiener method, which in turn helps to produce more accurate DTIs.
基金the Innovation Foundation of NUDT forPh.D.graduates.
文摘This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant-Block(BCCB)preconditioner is constructed.Based on thepreconditioner,a Preconditioned Multistage Wiener Filter(PMWF)which can be implemented by thePreconditioned Conjugate Gradient(PCG)method is proposed.Simulation results show that thePMWF has faster convergence rate and lower processing rank compared with the MWF.
文摘This paper presents recent naval applications of the SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach implemented for the first time with high order fully unstructured schemes and an efficient level-set method to capture free surface flows around realistic hull geometries. Numerical simulations in waves and/or viscous flows still lead generally to very large CPU times because of grid requirements to ensure a good propagation of incident waves in the meshed part of the fluid domain that makes unreachable any hull design optimization process in an industrial context. Furthermore, even if the SWENSE method clearly shows promising results in an academic context in both regular and irregular waves, the most recent publications still highlight several issues that remain unresolved up to now, e.g. poor scalability, diffusive wake pattern, non-versatile structured mesh approaches and only very few validation test cases are carried out on Wigley or DTMB 5415 hulls. In order to overcome those numerical difficulties and get an in-depth validation of the method on several cases in realistic wave conditions, a two and a half years' research project has been achieved involving several steps, starting by a set of dedicated model test experiments later used as reference for the validation of the method. The CFD commercial code ANANASTM used and developed in this research program is presented and validated in detail. The use of high order schemes on unstructured grids in combination with these SWENSE method and level-set approach offer to the maritime industry an innovative and state of the art method to achieve unequaled accuracy, low computation time and some unique advantages such as, amongst others, the end of the numerical wave propagation problems. The results of the validation were pleasing and can be considered as acceptable in general, with some challenges remaining to the solyed. Results obtained indicate that an optimization processes in waves in realistic conditions is now affordable in an industrial context.
基金supported by the National Natural Science Foundation of China under Grant Nos.11201005,11526070 and 11601008the Project of National Bureau of Statistics under Grant No.2013LZ17+1 种基金the Project of Anhui Educational Committee under Grant No.gxfx ZD2016015the Natural Science Foundation of Anhui Province under Grant No.1408085MA07
文摘This paper proposes an objective Bayesian method to study the degradation model with respect to a Wiener process.The Jeffreys prior and reference prior for the parameters are derived,and the propriety of the posteriors under these priors is validated.Two sampling algorithms are introduced to compute the posteriors.A simulation study is conducted to investigate the performance of the objective Bayesian procedure.Finally,the authors apply the approach to a degradation data.
文摘Photodynamic therapy (PDT), which is a procedure that uses photosensitizing drug to apply therapy selectively to target sites, has been proven to be a safe treatment for cancers and conditions that may develop into cancers. Nano-sized TiO2 has been regarded as potential photosensitizer for UV light driven PDT. In this study, four types of TiO2 nanofibers were prepared from proton tri-titanate (H2T3O7) nanofiber. The as-obtained nanofibers were demonstrated as efficient photosensitizers for PDT killing of HeLa cells. MTT assay and flow cytometry (FCM) were carried out to evaluate the biocompatibility, percentage of apoptotic cells, and cell viability. The non-cytotoxicity of the as-prepared TiO2 nanofibers in the absence of UV irradiation has also been demonstrated. Under UV light irradiation, the TiO2 nanofibers, particularly the mixed phase nanofibers, displayed much higher cell-killing efficiency than Pirarubicin (THP), which is a common drug to induce the apoptosis of HeLa cells. We ascribe the high cell- killing efficiency of the mixed phase nanofibers to the bandgap edge match and stable interface between TiO2(B) and anatase phases in a single nanofiber, which can inhibit the recombination of the photogenerated electrons and holes. This promotes the charge separation and transfer processes and can produce more reactive oxygen species (ROS) that are responsible for the killing of HeLa cells.
文摘The controlled synthesis of gold nanocrystals has been the subject of intensive studies for decades because the properties and functions of gold nanomaterials are highly dependent on their particle size, shape, and dimensionality. Especially, anisotropic gold nanocrystals, such as nanowires, nanobelts, nanoplates and nanosheets, have attracted much attention due to their striking properties and promising applications in electronics, catalysis, photonics, sensing and biomedicine. In this review, we will summarize the recent developments of one- dimensional (1D) and two-dimensional (2D) gold nanostructures. Various kinds of synthetic methods for preparation of these 1D and 2D gold nanocrystals will be described. Moreover, we will also briefly introduce the properties and potential applications of these 1D and 2D gold nanocrystals.
基金supported by the Russian Foundation for Basic Research(Grant No.13-08-00786-a)
文摘The paper describes the results of the electron-beam initiation of the combustion in the mixtures of hydrogen,natural gas or kerosene vapors with air.Electron beam characteristics were studied in closed volume with immobile gas.The researches included definition of an integrated current of an electronic beam,distribution of a current density and an estimation of average energy of electrons.Possibility of fuel mixtures ignition by means of this approach in the combustor at high velocity at the entrance was demonstrated.Experiments were carried out at Mach numbers of 4 and 5.Process of ignition and combustion under electron beam action was researched.It was revealed that ignition of mixture occurs after completion of electron gun operation.Data obtained have confirmed effectiveness of electron beam application for ignition of hydrogen and natural gas.The numerical simulation of the combustion of mixture in channel was carried out by means of ANSYS CFD 12.0 instrumentation on the basis of Reynolds averaged Navier-Stokes equation using SST/k-ωturbulence model.For combustion modeling,a detailed kinetic scheme with 38 reactions of 8 species was implemented taking into account finite rate chemistry.Computations have shown that the developed model allow to predict ignition of a mixture and flame propagation even at low flow temperatures.
基金supported by the National Natural Science Foundation of China (Grant No. 51002059)the National Basic Research Program of China (Grant No. 2011CBA00700)+2 种基金the Natural Science Foundation of Hubei Province (Grant No. 2009CDB326)the Research Fund for the Doctoral Program of Higher Education (Grant Nos. 20090142120059, 20100142120053)the Director Fund of WNLO. Special thanks to the Analysis and Testing Center of HUST
文摘Iron oxides, including α-Fe2O3, γ-Fe2O3, Fe3O4, etc. are one of the most widely investigated materials for their fundamental properties and potential applications. One-dimensional (1-D) iron oxides nanostructures are the focus of recent research activi- ties because of their wide applications in magnetic refrigeration, information storage, electronics, catalysts, Li-ion battery, pigment, gas sensors, etc. This review covers the recent progress in the synthesis, properties and applications of 1-D iron oxides nanostructures. The paper begins with the introduction to 1-D iron oxides nanostructures, followed by the typical synthetic methods developed for the synthesis of 1-D iron oxides nanostructures. Then, the typical 1-D iron oxides nanostructures, in- cluding nanowires/nanorods, nanotubes, nanobelts, nanochalns, and special 3-D structures built on 1-D building blocks, are introduced in detail. The properties of 1-D iron oxides nanostructures are then discussed, focusing on the magnetic, gas sensing, and electrochemical and photocatalytic properties. Finally, we draw conclusions and look at the prospects of 1-D iron oxides nanostructures.
基金supported by the National Natural Science Foundation of China(No.11004042)the National Key Scientific Instrument and Equipment Development Projects(No.2012YQ040164)the Science Funds of Heilongjiang Province(No.F2016015)
文摘This paper describes a full waveform sampling LiDAR system applying stripe principle. A kind of denoising method based on edge detection of original stripe signal is proposed. This method is compared with other denoising methods, such as Wiener filtering, mean filtering and median filtering. It is found that the proposed denoising method is much more effective for dealing with the waveform signals.
基金supported by the National Natural Science Foundation of China(No.21666007)the Science Technology Foundation of Guizhou Province(No.2014-2007)the Program for “Hundred” High-Level Talents in Guizhou Province(No.2016-5655)
文摘The xonotlite fibers were synthesized via the hydrothermal synthesis method with CaO and SiO_2 as the raw materials and the molar ratio of Si/Ca of 1.0. Effect of anions from various calcium sources on the microstructure of the xonotlite fibers is studied in this paper. These obtained products were characterized by X-ray diffraction(XRD), transmission electron microscope(TEM) and scanning electron microscope(SEM) techniques to investigate their crystalline phase, crystal structure and morphology. The results indicate that anion from various calcium sources has little influence on the crystalline phases of xonotlite fibers but poses a great impact on their morphologies. Xonotlite fibers with single crystal characteristics and large aspect ratio of 50—100 were successfully fabricated from CaCl_2 as calcium material at 225 °C for 15 h. The existence of Cl-anion in the CaO-SiO_2-H_2O system significantly contributes to the formation of xonotlite crystal.
基金supported by the National Natural Science Foundation of China (21571073, 51302099, 51472097)the Ministry of Science and Technology of China (2015CB932600)+2 种基金the Hubei Provincial Natural Science Foundation (2016CFA031)the Program for Huazhong University of Science and Technology (HUST) Interdisciplinary Innovation Team (2015ZDTD038)the Fundamental Research Funds for the Central University (2017KFKJXX007)
文摘Electrospinning is firstly used to one-pot synthesis of Li3VO4@C nanofibers in a large scale. Although with the presence of organic sources in synthesis process, the pure phase Li3VO4 with superior nanofibrous morphology is still successfully obtained through adjusting different heat treatment processes and different vanadium sources. The prepared Li3VO4@C nanofibers exhibit a unique structure in which nanosized Li3VO4 particles are uniformly embedded in amorphous carbon matrix. Compared with LiBVO4/C powder, Li3VO4@C nanofibers display enhanced reversible capacity of 451 mAhg^-1 at 40mAg^-1 with an increased initial coulombic efficiency of 82.3%, and the capacity can remain at 394 mAh g ^-1 after 100 cycles. This superior electrochemical performance can be attributed to its unique structure which ensures a high reactivity by nanosized Li3VO4, more stable electrode/electrolyte interface by carbon encapsulation, improved electronic conductivity and buffered volume changes by flexible carbon matrix. The electrospinning technology provides an effective method to obtain high performance Li3VO4 as a promising anode material for lithium-ion batteries.