On augmentation of past work, an effective Wiener filter and its application for noise suppression combined with a formed CORDIC based FFT/IFFT processor with improved speed were executed. The pipelined methodology wa...On augmentation of past work, an effective Wiener filter and its application for noise suppression combined with a formed CORDIC based FFT/IFFT processor with improved speed were executed. The pipelined methodology was embraced for expanding the execution of the system. The proposed Wiener filter was planned in such an approach to evacuate the iteration issues in ordinary Wiener filter. The division process was supplanted by a productive inverse and multiplication process in the proposed design. An enhanced design for matrix inverse with reduced computation complexity was executed. The wide-ranging framework processing was focused around IEEE-754 standard single precision floating point numbers. The Wiener filter and the entire system design was integrated and actualized on VIRTEX 5 FPGA stage and re-enacted to approve the results in Xilinx ISE 13.4. The results show that a productive decrease in power and area is developed by adjusting the proposed technique for speech signal noise degradation with latency of n/2 clock cycles and substantial throughput result per every 12 clock cycles for n-bit precision. The execution of proposed design is exposed to be 31.35% more effective than that of prevailing strategies.展开更多
To denoise the diffusion weighted images (DWls) featured as multi-boundary, which was very important for the calculation of accurate DTIs (diffusion tensor magnetic resonance imaging), a modified Wiener filter was...To denoise the diffusion weighted images (DWls) featured as multi-boundary, which was very important for the calculation of accurate DTIs (diffusion tensor magnetic resonance imaging), a modified Wiener filter was proposed. Through analyzing the widely accepted adaptive Wiener filter in image denoising fields, which suffered from annoying noise around the edges of DWIs and in turn greatly affected the denoising effect of DWIs, a local-shift method capable of overcoming the defect of the adaptive Wiener filter was proposed to help better denoising DWIs and the modified Wiener filter was constructed accordingly. To verify the denoising effect of the proposed method, the modified Wiener filter and adaptive Wiener filter were performed on the noisy DWI data, respectively, and the results of different methods were analyzed in detail and put into comparison. The experimental data show that, with the modified Wiener method, more satisfactory results such as lower non-positive tensor percentage and lower mean square errors of the fractional anisotropy map and trace map are obtained than those with the adaptive Wiener method, which in turn helps to produce more accurate DTIs.展开更多
This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant...This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant-Block(BCCB)preconditioner is constructed.Based on thepreconditioner,a Preconditioned Multistage Wiener Filter(PMWF)which can be implemented by thePreconditioned Conjugate Gradient(PCG)method is proposed.Simulation results show that thePMWF has faster convergence rate and lower processing rank compared with the MWF.展开更多
This paper describes a full waveform sampling LiDAR system applying stripe principle. A kind of denoising method based on edge detection of original stripe signal is proposed. This method is compared with other denois...This paper describes a full waveform sampling LiDAR system applying stripe principle. A kind of denoising method based on edge detection of original stripe signal is proposed. This method is compared with other denoising methods, such as Wiener filtering, mean filtering and median filtering. It is found that the proposed denoising method is much more effective for dealing with the waveform signals.展开更多
文摘On augmentation of past work, an effective Wiener filter and its application for noise suppression combined with a formed CORDIC based FFT/IFFT processor with improved speed were executed. The pipelined methodology was embraced for expanding the execution of the system. The proposed Wiener filter was planned in such an approach to evacuate the iteration issues in ordinary Wiener filter. The division process was supplanted by a productive inverse and multiplication process in the proposed design. An enhanced design for matrix inverse with reduced computation complexity was executed. The wide-ranging framework processing was focused around IEEE-754 standard single precision floating point numbers. The Wiener filter and the entire system design was integrated and actualized on VIRTEX 5 FPGA stage and re-enacted to approve the results in Xilinx ISE 13.4. The results show that a productive decrease in power and area is developed by adjusting the proposed technique for speech signal noise degradation with latency of n/2 clock cycles and substantial throughput result per every 12 clock cycles for n-bit precision. The execution of proposed design is exposed to be 31.35% more effective than that of prevailing strategies.
基金Project(2009AA04Z214) supported by the National High Technology Research and Development Program of ChinaProject(07JJ6133) supported by the Natural Science Foundation of Hunan Province, China
文摘To denoise the diffusion weighted images (DWls) featured as multi-boundary, which was very important for the calculation of accurate DTIs (diffusion tensor magnetic resonance imaging), a modified Wiener filter was proposed. Through analyzing the widely accepted adaptive Wiener filter in image denoising fields, which suffered from annoying noise around the edges of DWIs and in turn greatly affected the denoising effect of DWIs, a local-shift method capable of overcoming the defect of the adaptive Wiener filter was proposed to help better denoising DWIs and the modified Wiener filter was constructed accordingly. To verify the denoising effect of the proposed method, the modified Wiener filter and adaptive Wiener filter were performed on the noisy DWI data, respectively, and the results of different methods were analyzed in detail and put into comparison. The experimental data show that, with the modified Wiener method, more satisfactory results such as lower non-positive tensor percentage and lower mean square errors of the fractional anisotropy map and trace map are obtained than those with the adaptive Wiener method, which in turn helps to produce more accurate DTIs.
基金the Innovation Foundation of NUDT forPh.D.graduates.
文摘This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant-Block(BCCB)preconditioner is constructed.Based on thepreconditioner,a Preconditioned Multistage Wiener Filter(PMWF)which can be implemented by thePreconditioned Conjugate Gradient(PCG)method is proposed.Simulation results show that thePMWF has faster convergence rate and lower processing rank compared with the MWF.
基金supported by the National Natural Science Foundation of China(No.11004042)the National Key Scientific Instrument and Equipment Development Projects(No.2012YQ040164)the Science Funds of Heilongjiang Province(No.F2016015)
文摘This paper describes a full waveform sampling LiDAR system applying stripe principle. A kind of denoising method based on edge detection of original stripe signal is proposed. This method is compared with other denoising methods, such as Wiener filtering, mean filtering and median filtering. It is found that the proposed denoising method is much more effective for dealing with the waveform signals.