This paper explores the integrated utilization of low-grade thermal energy in hot coal mines, based on analysis of original heating, refrigerating, mine draining, bath draining and air exhaust systems, and in combinat...This paper explores the integrated utilization of low-grade thermal energy in hot coal mines, based on analysis of original heating, refrigerating, mine draining, bath draining and air exhaust systems, and in combination with the actual conditions of Tangkou Coal Mine in Shandong Province. It presents a set of comprehensive and integrated utilization schemes for the various different kinds of low quality heat energy. With heat pumps, the recycling of the low quality heat energy from the drainage, bathing water and the exhaust air can occur in winter, and in summer, there exists condensed heat of the refrigerating system. When in conjunction with solar collectors, the thermal utilization of solar power can be realized for the whole year. The system achieves mine drainage and bathing water purification and recycling, as well as purifying exhaust air by water spraying. It also satisfies the demands of a whole year's bathing heat for the coal mine, with refrigeration in summer, and heating for the ground house and shaft house in winter. It is able to integrate different kinds of low quality heat energy and low emission drainage and dust, and can replace the traditional boiler heating system. Finally, the system reduces conventional energy consumption and the amount of mine water drainage.展开更多
To meet the demand of urban rainwater integrated management,we designed and complemented a physical simulation experimental system of urban rainfall infiltration regulation parameters.We discuss the feasibility of qua...To meet the demand of urban rainwater integrated management,we designed and complemented a physical simulation experimental system of urban rainfall infiltration regulation parameters.We discuss the feasibility of quantitative regulations of urban underlying surface rainfall infiltration conditions and a practical application of a simulated experimental system.In a com- prehensive analysis of the composition of an effective rainwater harvesting system and selection of water storage material,we simulated the major parameters of an experimental area rainfall,soil moisture and water storage capacity by providing an effective regulation of the experimental area runoff coefficient,obtained from basic data.展开更多
文摘This paper explores the integrated utilization of low-grade thermal energy in hot coal mines, based on analysis of original heating, refrigerating, mine draining, bath draining and air exhaust systems, and in combination with the actual conditions of Tangkou Coal Mine in Shandong Province. It presents a set of comprehensive and integrated utilization schemes for the various different kinds of low quality heat energy. With heat pumps, the recycling of the low quality heat energy from the drainage, bathing water and the exhaust air can occur in winter, and in summer, there exists condensed heat of the refrigerating system. When in conjunction with solar collectors, the thermal utilization of solar power can be realized for the whole year. The system achieves mine drainage and bathing water purification and recycling, as well as purifying exhaust air by water spraying. It also satisfies the demands of a whole year's bathing heat for the coal mine, with refrigeration in summer, and heating for the ground house and shaft house in winter. It is able to integrate different kinds of low quality heat energy and low emission drainage and dust, and can replace the traditional boiler heating system. Finally, the system reduces conventional energy consumption and the amount of mine water drainage.
基金Projects 40371113 supported by the National Natural Science Foundation of ChinaOF060096 by the Youth Scientific Foundation of China University of Mining & Technology
文摘To meet the demand of urban rainwater integrated management,we designed and complemented a physical simulation experimental system of urban rainfall infiltration regulation parameters.We discuss the feasibility of quantitative regulations of urban underlying surface rainfall infiltration conditions and a practical application of a simulated experimental system.In a com- prehensive analysis of the composition of an effective rainwater harvesting system and selection of water storage material,we simulated the major parameters of an experimental area rainfall,soil moisture and water storage capacity by providing an effective regulation of the experimental area runoff coefficient,obtained from basic data.