Crimped ribbon flame arresters are important safety devices in the chemical industry, especially for the danger- ous situations. Although proper design of arresters by the numerical simulation method is promising, its...Crimped ribbon flame arresters are important safety devices in the chemical industry, especially for the danger- ous situations. Although proper design of arresters by the numerical simulation method is promising, its reliabil- ity and accuracy are dependent upon the mathematical model. In this work, an integrated mathematical model for the microchannel in the crimped ribbon flame attesters was set up; the fluid flow behavior and the sensitiv- ities of four chemical kinetics mechanisms of propane-air on the accuracy were analysed. It is shown that turbu- lence is predominant in the microchannel of the crimped ribbon flame arresters under the defiagration and detonation conditions, and a new quenching criterion for the numerical simulation is proposed. The kinetics mechanism of Mansouri et al. among the four ones is the most accurate due to the best agreement of the pre- dicted outlet temperature at the experimental flameproof velocity with the autoignition temperature of propane-air. The species mass fraction profiles and the temperature distribution, which are too difficult to mea- sure due to the tiny dimension of the microchannel in experiments, are captured. The fundamental insights into chemical reactions and heat loss are well portrayed. It can be concluded that the integrated mathematical model established in this work can be used as a reliable tool for modeling, selecting and designing such type of crimped ribbon flame attesters with the propane-air medium in the future.展开更多
Based on fuzzy mathematics, comprehensive comparisons among four kinds of materials for manufacturing shearer bits were made in six aspects which are respec- tively hardness, tensile strength, impact toughness, relati...Based on fuzzy mathematics, comprehensive comparisons among four kinds of materials for manufacturing shearer bits were made in six aspects which are respec- tively hardness, tensile strength, impact toughness, relative wearability, relative lifespan and relative cost. Material 4 is preferred to be the targeted choice for manufacturing bits with superior comprehensive and economic performances.展开更多
With isopentane as working fluid, the heat transfer performances for corrugated, nodal and horizontal grain tubes are simulated. The structural parameters of the three kinds of tubes are compared with those of the pla...With isopentane as working fluid, the heat transfer performances for corrugated, nodal and horizontal grain tubes are simulated. The structural parameters of the three kinds of tubes are compared with those of the plain tube. The numerical results using computational fluid dynamics are validated with theoretical values. For the corrugated, nodal and horizontal grain tubes, the heat transfer enhancements(HTEs) are 2.31—2.53, 1.18—1.86 and 1.02—1.31 times of those of the plain tube, respectively. However, the improved HTEs are at the expense of pressure losses. The drag coefficients are 6.10—7.09, 2.06—11.03 and 0.53—1.83 higher, respectively. From the viewpoint of comprehensive heat transfer factor, the corrugated tube is recommended for engineering applications, followed by the horizontal grain tube.展开更多
基金Supported by the National Key Research and Development Program of China(2016YFB0301701)the National Natural Science Foundation of China(21706268+4 种基金9143411421376254)the Postdoctoral Science Foundation of Qingdao Municipal Government(Y7330419DM)the Instrument Developing Project of the Chinese Academy of Sciences(YZ201641)State Key Laboratory of Safety and Control for Chemicals of China
文摘Crimped ribbon flame arresters are important safety devices in the chemical industry, especially for the danger- ous situations. Although proper design of arresters by the numerical simulation method is promising, its reliabil- ity and accuracy are dependent upon the mathematical model. In this work, an integrated mathematical model for the microchannel in the crimped ribbon flame attesters was set up; the fluid flow behavior and the sensitiv- ities of four chemical kinetics mechanisms of propane-air on the accuracy were analysed. It is shown that turbu- lence is predominant in the microchannel of the crimped ribbon flame arresters under the defiagration and detonation conditions, and a new quenching criterion for the numerical simulation is proposed. The kinetics mechanism of Mansouri et al. among the four ones is the most accurate due to the best agreement of the pre- dicted outlet temperature at the experimental flameproof velocity with the autoignition temperature of propane-air. The species mass fraction profiles and the temperature distribution, which are too difficult to mea- sure due to the tiny dimension of the microchannel in experiments, are captured. The fundamental insights into chemical reactions and heat loss are well portrayed. It can be concluded that the integrated mathematical model established in this work can be used as a reliable tool for modeling, selecting and designing such type of crimped ribbon flame attesters with the propane-air medium in the future.
文摘Based on fuzzy mathematics, comprehensive comparisons among four kinds of materials for manufacturing shearer bits were made in six aspects which are respec- tively hardness, tensile strength, impact toughness, relative wearability, relative lifespan and relative cost. Material 4 is preferred to be the targeted choice for manufacturing bits with superior comprehensive and economic performances.
基金Supported by the National High Technology Research and Development Program of China("863"Program,No.2012AA053001)
文摘With isopentane as working fluid, the heat transfer performances for corrugated, nodal and horizontal grain tubes are simulated. The structural parameters of the three kinds of tubes are compared with those of the plain tube. The numerical results using computational fluid dynamics are validated with theoretical values. For the corrugated, nodal and horizontal grain tubes, the heat transfer enhancements(HTEs) are 2.31—2.53, 1.18—1.86 and 1.02—1.31 times of those of the plain tube, respectively. However, the improved HTEs are at the expense of pressure losses. The drag coefficients are 6.10—7.09, 2.06—11.03 and 0.53—1.83 higher, respectively. From the viewpoint of comprehensive heat transfer factor, the corrugated tube is recommended for engineering applications, followed by the horizontal grain tube.