Crimped ribbon flame arresters are important safety devices in the chemical industry, especially for the danger- ous situations. Although proper design of arresters by the numerical simulation method is promising, its...Crimped ribbon flame arresters are important safety devices in the chemical industry, especially for the danger- ous situations. Although proper design of arresters by the numerical simulation method is promising, its reliabil- ity and accuracy are dependent upon the mathematical model. In this work, an integrated mathematical model for the microchannel in the crimped ribbon flame attesters was set up; the fluid flow behavior and the sensitiv- ities of four chemical kinetics mechanisms of propane-air on the accuracy were analysed. It is shown that turbu- lence is predominant in the microchannel of the crimped ribbon flame arresters under the defiagration and detonation conditions, and a new quenching criterion for the numerical simulation is proposed. The kinetics mechanism of Mansouri et al. among the four ones is the most accurate due to the best agreement of the pre- dicted outlet temperature at the experimental flameproof velocity with the autoignition temperature of propane-air. The species mass fraction profiles and the temperature distribution, which are too difficult to mea- sure due to the tiny dimension of the microchannel in experiments, are captured. The fundamental insights into chemical reactions and heat loss are well portrayed. It can be concluded that the integrated mathematical model established in this work can be used as a reliable tool for modeling, selecting and designing such type of crimped ribbon flame attesters with the propane-air medium in the future.展开更多
A novel heat treatment process,stepping quenching and partitioning(S-Q-P),has been developed to manipulate microstructure and mechanical properties of steels.Based on incomplete partitioning of carbon from martensite ...A novel heat treatment process,stepping quenching and partitioning(S-Q-P),has been developed to manipulate microstructure and mechanical properties of steels.Based on incomplete partitioning of carbon from martensite to austenite,volume fraction and distribution of the retained austenite resulting from the following quenching of the steels could be effectively controlled,and then the synthesized mechanical properties of the steels would be improved.In this paper,20SiMn2MoVA steel was treated with conventional quenching-tempering(Q-T),currently prevailing quenching-partitioning(Q-P) and S-Q-P processes,respectively.The results indicated that the volume fraction of the retained austenite of the steel treated by Q-P and S-Q-P processes increased significantly that resulted in the increase of ductility and decrease of strength.The product of strength and ductility of the steel treated by S-Q-P process reached 23.7GPa%,that was increased by about 13% and 7% compared with that after Q-T and Q-P processes,respectively.Compared with the great improvement of the synthesized mechanical property obtained by S-Q-P process with another steel 35SiMn,there would be some factors that deteriorated the effect of S-Q-P process on 20SiMn2MoVA steel.It was found by microstructural testing that the carbide forming elements V and Mo in the steel led to precipitation of carbides during partitioning period and lack of carbon in austenite.As a result,less austenite would remain after final quenching and mechanical properties of the steel would be influenced.The results would be beneficial for understanding the principle of S-Q-P process and improving the design of the S-Q-P steel compositions.展开更多
Dynamic modeling and active control of a strap-on launch vehicle are studied in this paper. In the dynamic modeling, the double-compatible free-interface modal synthesis method is used to establish dynamic model of th...Dynamic modeling and active control of a strap-on launch vehicle are studied in this paper. In the dynamic modeling, the double-compatible free-interface modal synthesis method is used to establish dynamic model of the system, and its model precision is compared with those of finite element method(FEM), fixedinterface modal synthesis method and free-interface modal synthesis method. In the active control, the swing angle of rocket motor is used as design variable, and the control law design based on the model of mass center motion is adopted to validate the system. Simulation results indicate that the double-compatible model synthesis method can properly approximate the FEM which is used as the benchmark solution, and the model precision of the double-compatible modal synthesis method is obviously higher than those of the fixed-interface and freeinterface modal synthesis methods. Based on the control law design, the deflection of mass center of the launch vehicle is very small.展开更多
基金Supported by the National Key Research and Development Program of China(2016YFB0301701)the National Natural Science Foundation of China(21706268+4 种基金9143411421376254)the Postdoctoral Science Foundation of Qingdao Municipal Government(Y7330419DM)the Instrument Developing Project of the Chinese Academy of Sciences(YZ201641)State Key Laboratory of Safety and Control for Chemicals of China
文摘Crimped ribbon flame arresters are important safety devices in the chemical industry, especially for the danger- ous situations. Although proper design of arresters by the numerical simulation method is promising, its reliabil- ity and accuracy are dependent upon the mathematical model. In this work, an integrated mathematical model for the microchannel in the crimped ribbon flame attesters was set up; the fluid flow behavior and the sensitiv- ities of four chemical kinetics mechanisms of propane-air on the accuracy were analysed. It is shown that turbu- lence is predominant in the microchannel of the crimped ribbon flame arresters under the defiagration and detonation conditions, and a new quenching criterion for the numerical simulation is proposed. The kinetics mechanism of Mansouri et al. among the four ones is the most accurate due to the best agreement of the pre- dicted outlet temperature at the experimental flameproof velocity with the autoignition temperature of propane-air. The species mass fraction profiles and the temperature distribution, which are too difficult to mea- sure due to the tiny dimension of the microchannel in experiments, are captured. The fundamental insights into chemical reactions and heat loss are well portrayed. It can be concluded that the integrated mathematical model established in this work can be used as a reliable tool for modeling, selecting and designing such type of crimped ribbon flame attesters with the propane-air medium in the future.
基金supported by the National Basic Research Program of China("973" Program) (Grant No. 2010CB630805)
文摘A novel heat treatment process,stepping quenching and partitioning(S-Q-P),has been developed to manipulate microstructure and mechanical properties of steels.Based on incomplete partitioning of carbon from martensite to austenite,volume fraction and distribution of the retained austenite resulting from the following quenching of the steels could be effectively controlled,and then the synthesized mechanical properties of the steels would be improved.In this paper,20SiMn2MoVA steel was treated with conventional quenching-tempering(Q-T),currently prevailing quenching-partitioning(Q-P) and S-Q-P processes,respectively.The results indicated that the volume fraction of the retained austenite of the steel treated by Q-P and S-Q-P processes increased significantly that resulted in the increase of ductility and decrease of strength.The product of strength and ductility of the steel treated by S-Q-P process reached 23.7GPa%,that was increased by about 13% and 7% compared with that after Q-T and Q-P processes,respectively.Compared with the great improvement of the synthesized mechanical property obtained by S-Q-P process with another steel 35SiMn,there would be some factors that deteriorated the effect of S-Q-P process on 20SiMn2MoVA steel.It was found by microstructural testing that the carbide forming elements V and Mo in the steel led to precipitation of carbides during partitioning period and lack of carbon in austenite.As a result,less austenite would remain after final quenching and mechanical properties of the steel would be influenced.The results would be beneficial for understanding the principle of S-Q-P process and improving the design of the S-Q-P steel compositions.
基金the National Natural Science Foundation of China(Nos.11132001,11272202 and 11472171)the Key Scientific Project of Shanghai Municipal Education Commission(No.14ZZ021)the Natural Science Foundation of Shanghai(No.14ZR1421000)
文摘Dynamic modeling and active control of a strap-on launch vehicle are studied in this paper. In the dynamic modeling, the double-compatible free-interface modal synthesis method is used to establish dynamic model of the system, and its model precision is compared with those of finite element method(FEM), fixedinterface modal synthesis method and free-interface modal synthesis method. In the active control, the swing angle of rocket motor is used as design variable, and the control law design based on the model of mass center motion is adopted to validate the system. Simulation results indicate that the double-compatible model synthesis method can properly approximate the FEM which is used as the benchmark solution, and the model precision of the double-compatible modal synthesis method is obviously higher than those of the fixed-interface and freeinterface modal synthesis methods. Based on the control law design, the deflection of mass center of the launch vehicle is very small.