期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
综采工作面转角及过中切工艺
1
作者 金玉华 关洪丰 +2 位作者 付刚 刘德山 张化军 《煤炭技术》 CAS 2001年第6期24-27,共4页
阐述了在复杂地质条件下 ,综采工作面如何转角及过中切工艺。
关键词 转角 综采工面角 巷道布置 支护形式 过中切
下载PDF
煤矿综采工煤肺患病及预防的研究
2
作者 唐汉超 刘锦峰 +1 位作者 刘爱明 陈玲 《阳煤科技》 1995年第3期4-12,共9页
通过对阳泉矿务局5个综采队295名综采18年观察,获得:①环境煤尘全尘浓度几何均数316.7mg/m^3,(其中游离SiO2含1.87%),超标30.7倍;估算成工种呼吸尘时间加权几何均数,采煤司机最高为35.6mg/m^3皮带工最低仅1.5mg/m^3。... 通过对阳泉矿务局5个综采队295名综采18年观察,获得:①环境煤尘全尘浓度几何均数316.7mg/m^3,(其中游离SiO2含1.87%),超标30.7倍;估算成工种呼吸尘时间加权几何均数,采煤司机最高为35.6mg/m^3皮带工最低仅1.5mg/m^3。②防降尘方法中,煤层注水后产尘浓度与煤体含蓄水份负相关(P〈0.05),浅壁注水比长钻孔注水效果好。同样条件下喷雾水压高降尘效果好。采煤机抑尘器喷雾比其它4种效果都好,静压喷雾效果最差。③防尘口罩呼吸尘阻尘率89.28%,10多年佩戴者无1人患煤肺病和发生0^+,与不佩戴者比较均有显著性(P〈0.025)。防尘口罩的投入已经产生了明显的社会和经济效益。④Logit法估算结果煤肺患病和0^+发生均与呼吸尘剂量相关(P〈0.0005)。18年累积患病率55.0‰.已超过国内工作30年控制患病率10‰的目标。⑤采煤机、支架、放顶煤三种主要产尘作业是防降尘的主攻目标,采煤司机、支架工、清理工、放顶煤工、进回风巷支护工是重点保护对象。 展开更多
关键词 综采工作面 综采工 呼吸尘 综合防尘
下载PDF
综采工作面过探煤巷技术实践 被引量:1
3
作者 董小明 徐文明 《低碳世界》 2018年第6期64-65,共2页
针对青龙煤矿11607工作面回采范围内存在本层探煤巷情况,论文通过对探煤巷与11607工作面位置关系以及巷道特点分析的基础上,提出了11607综采工作面过探煤巷的具体方法。结果表明,该方法是可行和有效的,为以后类似条件下工作面回采积累... 针对青龙煤矿11607工作面回采范围内存在本层探煤巷情况,论文通过对探煤巷与11607工作面位置关系以及巷道特点分析的基础上,提出了11607综采工作面过探煤巷的具体方法。结果表明,该方法是可行和有效的,为以后类似条件下工作面回采积累了经验。 展开更多
关键词 综采工 空巷 中间巷 支护
下载PDF
综采工煤工尘肺患病及预防的研究
4
作者 唐汉超 刘锦峰 +1 位作者 刘爱明 陈玲 《职业医学》 1997年第1期5-8,共4页
通过对某煤矿295名综采工与同期184名普采工、84名炮采工18年对照观察,煤工尘肺累积患病率分别为55‰、49.2‰、284.6‰,三者比较差别不显著(P>0.05),但都已超过国内连续工作30年患病率控制在10‰... 通过对某煤矿295名综采工与同期184名普采工、84名炮采工18年对照观察,煤工尘肺累积患病率分别为55‰、49.2‰、284.6‰,三者比较差别不显著(P>0.05),但都已超过国内连续工作30年患病率控制在10‰以下的目标。综采工中的采煤司机、放顶煤工、支架工、清理工、进回风巷支护工是重点保护人群,采煤机、放顶煤、支架是重点防降尘作业。采取下列三项措施可有效控制综采工煤工尘肺患病:①采煤前先行浅壁煤层注水,采煤时抑尘器喷雾。②工人佩戴防尘口罩。 展开更多
关键词 综采工 尘肺 降尘率 阻尘率 预防
原文传递
Key technologies and equipment for a fully mechanized top-coal caving operation with a large mining height at ultra-thick coal seams 被引量:61
5
作者 Jinhua Wang Bin Yu +4 位作者 Hongpu Kang Guofa Wang Debing Mao Yuntao Liang Pengfei Jiang 《International Journal of Coal Science & Technology》 EI 2015年第2期97-162,共66页
Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mi... Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed. 展开更多
关键词 Ultra-thick coal seams Top-coal caving mining Large mining height Mining method - Mining equipment Roadway support Safety guarantee
下载PDF
Analysis and application in controlling surrounding rock of support reinforced roadway in gob-side entry with fully mechanized mining 被引量:10
6
作者 DENG Yuehua TANG Jianxin +2 位作者 ZHU Xiangke FU Yong DAI Zhangyin 《Mining Science and Technology》 EI CAS 2010年第6期839-845,共7页
In order to optimize gob-side entry in fully-mechanized working face in moderate-thick-coal seams, we adopt a new attempt to pack roadside by pumping ordinary concrete, which is very important for the development of g... In order to optimize gob-side entry in fully-mechanized working face in moderate-thick-coal seams, we adopt a new attempt to pack roadside by pumping ordinary concrete, which is very important for the development of gob-side entry technology. The concrete has a long initial setting time and a low initial strength. So it is difficult to control the surrounding rock. In this paper, we analyze the effect of using roadside cable to reinforce supporting in gob-side entry surrounding rock controlling based on elas-tic-plastic and material mechanics knowledge. And then we propose a scheme that cable is used to reinforce roadside supporting and a single hydraulic prop is used as the temporary supporting in gob side. Using the numerical simulation software FLAC2D, we numerically simulated supporting scheme. Results of both the 2D modeling and the industrial test on No.3117 face in Jingang Mine prove that the scheme is feasible. The results show that the technology of protecting the roadway in gob-entry retained efficiently make up the deficiency of roadside packing with ordinary concrete, effectively control the roof strata and acquire a good result of retaining roadway. 展开更多
关键词 gob-side entry retained surrounding rock controlling cable reinforced roadside supporting FLAC2D single hydraulic prop roadside support pumping of concrete
下载PDF
Determining areas in an inclined coal seam floor prone to water-inrush by micro-seismic monitoring 被引量:11
7
作者 Sun Jian Wang Lianguo +2 位作者 Wang Zhansheng Hou Huaqiang Shen Yifeng 《Mining Science and Technology》 EI CAS 2011年第2期165-168,共4页
The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition f... The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition for predicting the water-resisting ability of the floor.We have used a high-precision microseismic monitoring technique to overcome the limited amount of data available from field measurements. The failure depth of a coal seam floor,especially an inclined coal seam floor,may be more accurately estimated by monitoring the continuous,dynamic failure of the floor.The monitoring results indicate the failure depth of the coal seam floor near the workface conveyance roadway(the lower crossheading) is deeper and that the failure range is wider here compared to the coal seam floor near the return airway(the upper crossheading).The results of micro-seismic monitoring show that the dangerous area for water-inrush from the coal seam floor may be identified.This provides an important field measurement that helps ensure safe and highly efficient mining of the inclined coal seam above the confined aquifer at the Taoyuan Coal Mine. 展开更多
关键词 Inclined coal seam Water-inrush from floor Dangerous area Micro-seismic monitoring
下载PDF
New development of sets equipment technologies for coal mine longwall face in China 被引量:9
8
《Journal of Coal Science & Engineering(China)》 2012年第1期1-9,共9页
Background of the development and achievement on sets equipment technologies for coal mine longwall face in China was reviewed initially. On the theoretical side, a coupling model of hydraulic support and surrounding ... Background of the development and achievement on sets equipment technologies for coal mine longwall face in China was reviewed initially. On the theoretical side, a coupling model of hydraulic support and surrounding rock, support pa- rameters optimization and threedimensional (3D) dynamic design method were presented. On the practical side, this paper out lined some of practical issues and discussed some relative methods and technologies. In thin seam coal longwall mining, how to lower equipment height is the first problem that should be solved. Roof pressure regularity, control of rooffall and collapse, and hydraulic support stability were investigated preferentially in 5-7 m coal seam longwall mining. The application of equip- ment for longwall mining with 5-7 m cutting height in China was concluded. The characteristics of full-mechanized top coal caving for extra thick seam coal were presented. The automation of top-caving hydraulic support and relevant equipment have achieved important breakthrough. At the end of this paper, further development of China's coal industry and longwall mining technologies and equipment were prospected in brief. This paper gives readers a comprehensive understanding of China's coal mine longwall face equipment technologies. It will give help to other countries on its coal mining development. 展开更多
关键词 sets equipment longwall mining coupling of hydraulic support and rock working face automation
下载PDF
Characteristics of compression fracture of "three soft" coal bed by perfusion and gas sucking technique 被引量:4
9
作者 WANG Zhi-rong LI Shu-kai WANG Yuan-xiao 《Journal of Coal Science & Engineering(China)》 2011年第1期43-46,共4页
Against the particularity of stratum-structure in "three soft" mine areas, according to rock indoor test and on-site sucking experiment, discussed the characteristics of argillization, compression fracture and sucki... Against the particularity of stratum-structure in "three soft" mine areas, according to rock indoor test and on-site sucking experiment, discussed the characteristics of argillization, compression fracture and sucking technique of soft coal with low permeability. It is clearly pointed out that the gas can be highly effectively sucked only by compression fracture along the occurrence of the coal seam, creating inter-seams crack belt because of the difference of bulgy deformation. After the flooding experiment in the 24080 workface of Pingdingshan No. 10 mine, the average single-bore volume of gas increases from 77 m3 to 7 893 mS, while decay cycle extended from 7 days to 80-90 days. Also, the single-bore extracting rate of gas increases to 33%. 展开更多
关键词 "three soft" coal bed hydraulic fracturing the exploiting and sucking of gas low-carbon economy
下载PDF
Suitable retention and recovery technology of floor coal at ends of fully mechanized face with great mining heights 被引量:3
10
作者 Zhang Nenghu Wu Qi +1 位作者 YuanYong Bai Qingsheng 《Mining Science and Technology》 EI CAS 2011年第2期281-285,共5页
Gateways at faces of great mining heights are mostly driven along the roof of coal seams.For gateway height restrictions,a 1-3 m floor coal is retained,leaving a triangular floor coal at the face ends,causing a loss o... Gateways at faces of great mining heights are mostly driven along the roof of coal seams.For gateway height restrictions,a 1-3 m floor coal is retained,leaving a triangular floor coal at the face ends,causing a loss of coal.In order to improve coal recovery rates and to ensure efficiency of equipment at coal mining faces,we investigated suitable retention methods and recovery technology of floor coal at face ends.The upper floor coal can directly be recovered by a shearer with floor dinting.The lower floor coal is recovered by shearer with floor dinting after advanced floor dinting and retaining a step for protecting coal sides in a haulage gateway.Field practice shows that this method can improve the coal recovery rates at fully mechanized working faces with great mining heights. 展开更多
关键词 Great mining heights Floor coal at face ends Floor coal recovery Floor dinting Step for protecting coal side
下载PDF
Backfilling technology and strata behaviors in fully mechanized coal mining working face 被引量:55
11
作者 Zhang Qiang Zhang Jixiong +1 位作者 Huang Yanli Ju Feng 《International Journal of Mining Science and Technology》 2012年第2期151-157,共7页
Based on the principle of fully mechanized backflling and coal mining technology and combined with the Xingtai Coal Mine conditions, we mainly optimized the coal mining equipment and adjusted the coal mining method in... Based on the principle of fully mechanized backflling and coal mining technology and combined with the Xingtai Coal Mine conditions, we mainly optimized the coal mining equipment and adjusted the coal mining method in the Xingtai Coal Mine 7606 working face for implementation this technology. Firstly, we define the practical backfilling process as the "(from backfilling scraper conveyor's) head to tail back- filling, step by step swinging up of the tamping arm, gradual compacting, moving formed backfilling scra- per conveyor when the second tamping arm cannot pass and connecting the immediate roof by back material push front material movement". Meanwhile, the stress changes of backfill body in coal mined out area was monitored by stress sensors, and the roof caving law was analyzed by monitoring the dynamic subsidence of -210 west roadway of this face. The site tests results show that using this new backfilling and coal mining integrated technology, the production capacity in the 7606 working face can reach to 283,000 ton a year, and 282,000 ton of solid materials (waste and fly ash) is backfilled, which meets the needs of high production and efficiency. The goaf was compactly backfilled with solid material and the strata behavior was quite desirable, with an actual maximum vertical stress of the backfill body of 5.5 MPa. Backfill body control the movement of overburden within a certain range, and there is no col- lapses of major areas in the overlying strata upon backfilled gob. The maximum subsidence and speed were 231 mm and 15.75 mm/d respectively, which proved the practical significance of this integrated technology. 展开更多
关键词 Fully mechanized backfilling and coalmining technologyHydraulic supportFormed backfilling scraper conveyorBackfilling technologyStrata behaviors
下载PDF
Numerical simulation of dust distribution at a fully mechanized face under the isolation effect of an air curtain 被引量:19
12
作者 Wang Pengfei Feng Tao Liu Ronghua 《Mining Science and Technology》 EI CAS 2011年第1期65-69,共5页
At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.... At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.The results show that the air curtain installed on the shearer can effectively prevent the dust (especially the respirable dust)from diffusing into the work area of the operator,reducing the dust concentration on the side of the operator and greatly improving his working environment.The field application of the air curtain shows that the dust-isolation effect of an air curtain is quite noticeable.The isolation efficiency for respiratory dust is over 70%and,as well,it has good dust-isolation effect for nonrespiratory dust.The air curtain is a useful way to resolve the problem of dust-isolation at a fully mechanized working face.It has a practical background elsewhere with more extensive applications. 展开更多
关键词 Fully mechanized face Air curtain Dust distribution Numerical simulation Dust-isolation efficiency
下载PDF
Feasibility analysis of gob-side entry retaining on a working face in a steep coal seam 被引量:10
13
作者 Deng Yuehua Wang Shouquan 《International Journal of Mining Science and Technology》 SCIE EI 2014年第4期499-503,共5页
Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in util... Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in utilizing the technology of gob-side entry retaining in steep coal seams is to safely and effectively prevent caving rock blocks from rushing into the gob-side entry by sliding downwards along levels. Using theoretical analysis and field methods, we numerically simulated the mining process on a fully-mechanized face in a steep coal seam. The stress and deformation process of roof strata has been analyzed, and the difficulty of utilizing the technology is considered and combined with practice in a steep working face in Lvshuidong mine. The feasibility of utilizing the technology of gob-side entry retaining in a steep coal seam has been recognised. We propose that roadways along the left lane offshoot body use a speciallymade reinforced steel dense net to build a dense rock face at the lower head. The results show that the lane offshoot branch creates effective roof control, safe conditions for roadway construction workers, and practical application of steeply inclined gob. 展开更多
关键词 Gob-side entry retaining Steep coal seam Fully-mechanized mining Feasibility analysis Numerical simulation
下载PDF
Mode of overlying rock roofing structure in large mining height coal face and analysis of support resistance 被引量:2
14
作者 吴锋锋 刘长友 杨敬轩 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3262-3272,共11页
The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significa... The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significantly affects the safe and efficient production of coal mines.By similar simulation experiment and theoretical analysis,the mode of fractured roofing structure of large mining height coal face and the method of determination of reasonable support resistance of the support was evaluated.Analysis shows that the structural mode of "combined cantilever beam – non-hinged roofing – hinged roofing" of the large mining height coal face appears at the roofing of large mining height coal face.The supporting factor of caved gangue at the gob is introduced,the calculating equations of the fractured step distance of roofing were derived and conventional calculating method of caved height of roofing was corrected and the method of determination of the length and height of each structural area of the roofing was provided.With reference to the excavating conditions at Jinhuagong coal mine in Datong minefield,the dimensions of structural areas of the roofing of the coal face were determined and analyzed,and reasonable support resistance of the height coal face was acquired.By selecting Model ZZ13000/28/60 support and with procedures of advanced pre-cracking blasting,the safe production of large mining height coal face was assured. 展开更多
关键词 large mining height roof structure roof model roof fracturing distance support resistance
下载PDF
Experimental study on the goaf flow field of the ‘‘U+I” type ventilation system for a comprehensive mechanized mining face 被引量:9
15
作者 Yu Zhaoyang Yang Shengqiang +2 位作者 Qin Yi Hu Xincheng Cheng Jianwei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第6期1003-1010,共8页
"U" and "U+I" type ventilation experiments were performed on a three-dimensional fully mechanized caving face simulation experimental platform. The distribution laws of the pressure field and gas field in the min... "U" and "U+I" type ventilation experiments were performed on a three-dimensional fully mechanized caving face simulation experimental platform. The distribution laws of the pressure field and gas field in the mine goal were obtained. Results show that the flow field in the goaf is generally asymmetric; the location of the gas accumulation area changes with ventilation parameters and can be used as an evaluation indicator to study the air leakage extent in the goal. Hence, drainage pipes buried in the goaf to intensively extract gas can be designed in such gas areas, which can give considerations in both improving gas drainage efficiency and reducing air leakage. By comparing the gas extraction effect of model experiments with that of on-site underground practices, the basic laws are commonly consistent according to comparative analysis. Thus the experimental results can be used to guide the application of underground gas prevent!o_n_and.control.. 展开更多
关键词 Goaf flow fieldInner interlocked tail roadwayPressure fieldGas fieldGas center areaVentilation-air-methane efficiency
下载PDF
Mining-induced variation in water levels in unconsolidated aquifers and mechanisms of water preservation in mines 被引量:2
16
作者 FAN Gangwei ZHOU Lei 《Mining Science and Technology》 EI CAS 2010年第6期814-819,共6页
Phreatic water resources are widely found in thick unconsolidated surface layers in western China, where water levels respond sensitively and quickly to large-scale underground mining in conjunction with shallow coal ... Phreatic water resources are widely found in thick unconsolidated surface layers in western China, where water levels respond sensitively and quickly to large-scale underground mining in conjunction with shallow coal seams. Longwall face #32201 of the Bulianta Coal Mine, in the Shendong coalfield was selected as an industrial trail base, where field observations on ground-water levels were conducted when the working face was below a water-rich area. The space-time variation in the behavior of un-consolidated water levels in response to underground mining and its relation with of advance were observed through the field trials. The basic conditions for water preservation in mines are presented and the mechanisms of water preservation in mining analyzed, given the geological condition of two key strata and a severely weathered layer buried in the overburden. The field trails show that water preservation in mining shallow coal seams can be successful under suitable conditions, providing new technology for envi-ronmental protection in the desert coalfields of northwestern China. 展开更多
关键词 shallow coal seams longwall coalface water preservation in mines water level
下载PDF
Effect of suppressing dust by multi-direction whirling air curtain on fully mechanized mining face 被引量:6
17
作者 Nie Wen Liu Yanghao +3 位作者 Wei Wenle Hu Xiangming Ma Xiao Peng Huitian 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期629-635,共7页
A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, ... A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, the dust suppression effect of a multi-direction whirling air curtain was studied in this paper. Under the influence of the wall attachment effect, the compressed air which blows out from the two-phase or three-phase radial outlets on the generator of the air curtain can form a multi-direction whirling air curtain, which can cover the whole roadway section of a fully mechanized mining face. The traditional method of controlling dust is a forcing system with exhaust overlap which has the major disadvantage of lacking a jet effect and consequently results in poor dust control. It is difficult to form the air flow field within the range of Lp ≤ 5√S. However, due to the effect of this novel system, the radial airflow can be turned into axial airflow allowing fresh air to flow through the length of the heading. The air flow field which is good at controlling dust diffusion can be formed 12.8 m from the heading face. Furthermore, the field measurement results show that before the application of a multi-direction whirling air curtain, the dust concentration is 348.6 mg/m^3 and 271.4 mg/m^3 respectively at the roadway cross-section measurement points which are 5 m and 10 m from the heading face. However, after the application of the multi-direction whirling air curtain, the dust concentration is only 61.2 mg/m3 and 14.8 mg/m^3, respectively. Therefore, the dust control effect of a multi-direction whirling air curtain is obvious. 展开更多
关键词 Fully mechanized mining face Compressed air Multi-directional whirling air curtain AirflowDust suppression
下载PDF
Distribution pattern of front abutment pressure of fully-mechanized working face of soft coal isolated island 被引量:16
18
作者 Xu Wenquan Wang Enyua +2 位作者 Shen Rongxi Song Dazhao Zhang Jingmin 《International Journal of Mining Science and Technology》 2012年第2期279-284,共6页
The front abutment pressure of a fully-mechanized workface of 11061 soft coal isolated island of Liangbei Coal Mine was measured and studied using a self-developed mining-induced stress monitoring system associated wi... The front abutment pressure of a fully-mechanized workface of 11061 soft coal isolated island of Liangbei Coal Mine was measured and studied using a self-developed mining-induced stress monitoring system associated with electromagnetic radiation technology, and the effects of abutment pressure distribution on strata behavior we discussed. The results indicate that the miningdnduced influencing distance advanced at the fully-mechanized working face of soft coal isolated island is larger than that at the gen- eral working face at the isolated island, besides the fracture zone in front of working face was widened to some extent, and the influencing range caused by relaxations on both roadways became bigger with the advancing working face. Moreover, it can be indicated that mining has significant effect on strata behav- ior of fully-mechanized working face of soft coal isolated island, which is mostly distributed in the area of stress concentration. The research results have an important reference value for revealing the distribution pattern of the front abutment pressure of a fully-mechanized working face of soft coal isolated island, and controlling the coal-rock dynamic disaster occurrence under similar mining conditions. 展开更多
关键词 Soft coalIsolated islandFully-mechanized working faceAbutment pressureCoal-rock dynamic disaster
下载PDF
Theoretical analysis on the deformation characteristics of coal wall in a longwall top coal caving face 被引量:5
19
作者 Bai Qingsheng Tu Shihao +1 位作者 Li Zhaoxin Tu Hongsheng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期199-204,共6页
Against the background of analyzing coal wall stability in 14101 fully mechanized longwall top coal caving face in Majialiang coal mine,based on the torque equilibrium of the coal wall,shield support and the roof stra... Against the background of analyzing coal wall stability in 14101 fully mechanized longwall top coal caving face in Majialiang coal mine,based on the torque equilibrium of the coal wall,shield support and the roof strata,an elastic mechanics model was established to calculate the stress applied on the coal wall.The displacement method was used to obtain the stress and deformation distributions of the coal wall.This study also researched the influence of support resistance,protective pressure to the coal wall,fracture position of the main roof and mining height on the coal wall deformation.The following conclusions are drawn:(1) The shorter the distance from the longwall face,the greater the vertical compressive stress and horizontal tensile stress borne by the coal wall.The coal wall is prone to failure in the form of compressive-shear and tension;(2) With increasing support resistance,the revolution angle of the main roof decreases linearly.As the support resistance and protective force supplied by the face guard increases,the maximum deformation of the coal wall decreases linearly;(3) As the face approaches the fracture position of the main roof,coal wall horizontal deformation increases significantly,and the coal wall is prone to instability;and(4) The best mining height of 14101 longwall face is 3.0 m. 展开更多
关键词 Longwall top coal caving face Coal wall deformation Torque equilibrium Displacement method Parametric analysis
下载PDF
Water protection in the western semiarid coal mining regions of China: A case study 被引量:5
20
作者 Huang Hanfu Wang Changshen +1 位作者 Bai Haibo Wang Zihe 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期719-723,共5页
The coal industry in China has been moving from the semiarid eastern to the drier western regions since the beginning of this century.Water protection is of the utmost concern for coal mining in these regions.Lu'a... The coal industry in China has been moving from the semiarid eastern to the drier western regions since the beginning of this century.Water protection is of the utmost concern for coal mining in these regions.Lu'an,as one of the state coal mining bases in China,has been seeing increasingly heavier pressure for the protection of water resources.This article considers Lu'an as an example and describes the ways these concerns may be alleviated.High mine-water utilization rates have effectively reduced wasting of water and,consequently,have reduced water demand.Using the top layers of the Ordavician as aquifuge barriers can prevent floor karst water inrush into the longwall face and can protect the regional Ordovician karst water resources at the same time.The strength of the overlying Quaternary clay can protect against roof collapse and has successfully preserved the Quaternary porous water resource. 展开更多
关键词 Water-protection Coal mining Mine water utilization rate Aquifuge barrier Arid region
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部