Blue and green organic fight-emitting devices with a structure of indium tin oxide (ITO)/N,N'-bis-(1-naphthyl)-N,N'- diphenyl- 1, l'-biphenyl-4,4'-diamine (NPB)/aluminum(HI) bis(2-methyl-8-quinolinato)4 ...Blue and green organic fight-emitting devices with a structure of indium tin oxide (ITO)/N,N'-bis-(1-naphthyl)-N,N'- diphenyl- 1, l'-biphenyl-4,4'-diamine (NPB)/aluminum(HI) bis(2-methyl-8-quinolinato)4 -phenylphenolato (BAlq)/tris(8- hydroxyquinolate)-aluminum (Alq3)/Mg:Ag have been fabricated. Blue to green light emission has been achieved with the change of organic film thickness. Based on energy band diagram and charge carrier tunneling theory, it is concluded that the films of different thicknesses play a role as a color-tuning layer and the color-variable electroluminescence (EL) is ascribed to the modulation function within the charge carrier recombination zone. In the case of heterostructure devices with high performance, the observed EL spectra varies significantly with the thickness of organic films, which is resulted from the shift of recombination region site. It has not been hitherto indicated that the devices compose of identical components could be implemented to realize different color emission by changing the film thickness of functional layers.展开更多
High refractive index(HRI,n>1.8)photonic structures offer strong light confinement and refractive efficiencies,cover the entire visible spectrum and can be tuned by designing geometric arrayed features.However,its ...High refractive index(HRI,n>1.8)photonic structures offer strong light confinement and refractive efficiencies,cover the entire visible spectrum and can be tuned by designing geometric arrayed features.However,its practical applications are still hindered by the applicability and material limitation of lithography-based micro/nano fabrication approaches.Herein,we demonstrate a fluid-guided printing process for preparing HRI selenium microarrays.The microstructured flexible template is replicated from the diced silicon wafer without any lithography-based methods.When heated above the glass transition temperature,the flow characteristics of selenium endows the structure downsizing and orientation patterning between the target substrate and the template.Near 10 times narrowing selenium microarrays(1.9μm width)are patterned from the non-lithography template(18μm width).HRI selenium microarrays offer high refractive efficiencies and strong optical confinement abilities,which achieve angledependent structurally coloration and polarization.Meanwhile,the color difference can be recognized under the one degree distinction of the angle between incident and refracted light.This printing platform will facilitate HRI optical metasurfaces in a variety of applications,ranging from photonic sensor,polarization modulation to light manipulation.展开更多
基金supported by National Science Foundation ofChina (Grant No. 60425101)Program for New Century Excel-lent Talents in University (Grant No. NCET-06-0812)the Young Excellent Project of UESTC( Grant No.060206)
文摘Blue and green organic fight-emitting devices with a structure of indium tin oxide (ITO)/N,N'-bis-(1-naphthyl)-N,N'- diphenyl- 1, l'-biphenyl-4,4'-diamine (NPB)/aluminum(HI) bis(2-methyl-8-quinolinato)4 -phenylphenolato (BAlq)/tris(8- hydroxyquinolate)-aluminum (Alq3)/Mg:Ag have been fabricated. Blue to green light emission has been achieved with the change of organic film thickness. Based on energy band diagram and charge carrier tunneling theory, it is concluded that the films of different thicknesses play a role as a color-tuning layer and the color-variable electroluminescence (EL) is ascribed to the modulation function within the charge carrier recombination zone. In the case of heterostructure devices with high performance, the observed EL spectra varies significantly with the thickness of organic films, which is resulted from the shift of recombination region site. It has not been hitherto indicated that the devices compose of identical components could be implemented to realize different color emission by changing the film thickness of functional layers.
基金the National Key R&D Program of China(2018YFA0208501)the National Natural Science Foundation of China(51803217,51773206,91963212,and 51961145102(BRICS Project))+3 种基金the Youth Innovation Promotion Association CAS(2020032)Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202005)Russian Foundation for Basic Research(19-52-80036(BRICS Project))K.C.Wong Education Foundation。
文摘High refractive index(HRI,n>1.8)photonic structures offer strong light confinement and refractive efficiencies,cover the entire visible spectrum and can be tuned by designing geometric arrayed features.However,its practical applications are still hindered by the applicability and material limitation of lithography-based micro/nano fabrication approaches.Herein,we demonstrate a fluid-guided printing process for preparing HRI selenium microarrays.The microstructured flexible template is replicated from the diced silicon wafer without any lithography-based methods.When heated above the glass transition temperature,the flow characteristics of selenium endows the structure downsizing and orientation patterning between the target substrate and the template.Near 10 times narrowing selenium microarrays(1.9μm width)are patterned from the non-lithography template(18μm width).HRI selenium microarrays offer high refractive efficiencies and strong optical confinement abilities,which achieve angledependent structurally coloration and polarization.Meanwhile,the color difference can be recognized under the one degree distinction of the angle between incident and refracted light.This printing platform will facilitate HRI optical metasurfaces in a variety of applications,ranging from photonic sensor,polarization modulation to light manipulation.