Spraying 1-2 mmol/L solution of NaHSO 3 on rice ( Oryza sativa L.) leaves resulted in the enhancement of net photosynthetic rate for more than three days. It was also observed that NaHSO 3 application caused incr...Spraying 1-2 mmol/L solution of NaHSO 3 on rice ( Oryza sativa L.) leaves resulted in the enhancement of net photosynthetic rate for more than three days. It was also observed that NaHSO 3 application caused increases both in ATP content in leaves and the millisecond_delayed light emission of leaves. The increase in net photosynthetic rate caused by NaHSO 3 treatment was similar to that by PMS (phenazine methosulfate) treatment. The grain yield of treated rice was enhanced approximately by 10% after duplicated application of NaHSO 3 in milk_ripening stage. It is suggested that the enhancement of photosynthesis by NaHSO 3 treatment resulted from the effect of increasing ATP supplement. Concomitant with an increase in the photosynthetic rate and ATP content in leaves, the transient increase in chlorophyll fluorescence after the termination of actinic light, which could be used as an index of the cyclic electron flow, was also enhanced by low concentration of NaHSO 3 treatment. Basing on these results it is proposed that the increase in rice photosynthesis caused by low concentrations of NaHSO 3 could be due to the stimulation of the cyclic electron flow around PSⅠ which in turn the enhancement of the coupled photophosphorylation and photosynthesis.展开更多
A high yielding rice mutant ( Oryza sativa L. cv. Zhenhui 249) with low chlorophyll b was recently discovered in the field. The mutant was mainly characterized by the decrease of the content of extrinsic antennae c...A high yielding rice mutant ( Oryza sativa L. cv. Zhenhui 249) with low chlorophyll b was recently discovered in the field. The mutant was mainly characterized by the decrease of the content of extrinsic antennae complex. This variation was shown in the stage when the leaves were expanding. When the leaves are at the final developmental stage, the content would approach to that of the wild type. It was discovered that only moderate amount of chlorophyll b decreased in this mutant. The photosynthetic apparatus of the mutant was rather stable in the whole life span of the leaf. The extrinsic antennae complex of the mutant might make efficient use of light and meanwhile reduce the production of O -· 2.展开更多
[Objective] The experiment aimed to explore physiological and biochemical changes of leaves after plants were mutated. [Method] A rice double mutant with stripes on stems, leaves and spikelets were taken as experiment...[Objective] The experiment aimed to explore physiological and biochemical changes of leaves after plants were mutated. [Method] A rice double mutant with stripes on stems, leaves and spikelets were taken as experimental materials to study the enzyme activity changes in different growth stages and amino acid variation in rice. [ Result] The SOD activity in mutant was higher than that in wild plant at tillering metaphase, but lower than that in wild type before heading stage and late flowering; the POD activity in three stages increased firstly then declined and the activity showed highest maximal activity at before heading stage. However, the POD activity in wild type showed the opposite change trend; the CAT activity presented degression at three stages, especially high at tillering metaphase, but reverse changes in wild type; the MDA activity decreased at three stages, but it was still higher than that in wild type, besides, the soluble sugar content of mutant was lower, but total amino acid content was increased. [ Conclusion] The expression of mutant characteristics was correlated with SOD, POD, CAT and MDA activity Changes and these changes made the mutant survive and rice quality change at last.展开更多
Using various high-yield rices (Oryza sativa L.) such as japonica cultivar 9516, two parental line hybrid rice between subspecies with more japonica element Peiai 64/E32, Liangyoupeijiu (Peiai 64/9311), and indica hyb...Using various high-yield rices (Oryza sativa L.) such as japonica cultivar 9516, two parental line hybrid rice between subspecies with more japonica element Peiai 64/E32, Liangyoupeijiu (Peiai 64/9311), and indica hybrid rices X07S/Zihui 100, Gangyou 881, Shanyou 63 as the materials, the characteristics of chlorophyll fluorescence and membrane-lipid peroxidation of detached leaves at booting stage under photooxidation conditions were studied. In comparison with indica hybrid rice, after the photooxidation treatment, the primary photochemical efficiency of PS II (F-v/F-m), quantum yield of linear electron transport of PS II (Phi(PSII)) and photochemical quenching coefficient (qP) in japonica cultivar and hybrid rice with japonica decreased less. This indicated that high-yield rice with japonica was able to maintain higher capability of light energy conversion, resulting in the alleviation of photoinhibition. Meanwhile, the higher activities of protective enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) led to the less accumulation of endogenous active oxygen (O-(2)(radical anion), H2O2) and less content of the malondialdehyde (MDA) and the less decline of chlorophyll and protein contents, indicating a stronger tolerance to photooxidation. The changes in contents of chlorophyll and protein among various nee cultivars during photooxidation treatment were consistent with the decline of chlorophyll content from heading stage to maturation stage under natural conditions. Statistical analysis showed that there was a significant correlation between the indexes of tolerance to photooxidation and the rate of seed setting, implying that the cultivar tolerated to photooxidation had higher resistance to early aging of leaf. These results suggested that from a view of superhigh-yield breeding, considering both the utilization of heterosis and the resistance to early aging of leaf, introduction of japonica element tolerating to photooxidation into the rice sterile line (maternal plant) is a breeding strategy worthy to pay great attention to.展开更多
The cellular localization of Rubisco and Rubisco activase (RCA) in rice (Oryza sativa subsp. indica cv. Zhenong 952) leaf was investigated with immunogold-labeled electron microscope techniques on the basis of determi...The cellular localization of Rubisco and Rubisco activase (RCA) in rice (Oryza sativa subsp. indica cv. Zhenong 952) leaf was investigated with immunogold-labeled electron microscope techniques on the basis of determining the diurnal changes of photosynthetic rate (Pn), Rubisco and RCA activities, and quantifying two enzyme contents in the leaf with immuno-diffusion method in order to understand why RCA activity decreased in the midday when its contents was high. The results showed that Rubisco mainly was located in chloroplast, and RCA were found both in chloroplast and mitochondria. The lowering of Rubisco in chloroplast as well as Rubisco activity at noon could be one of good reasons to explain the photosynthetic midday depression in leaf. The density of RCA in chloroplast reached the maximum at 14:00 and a valley at 11:00. The result much coincided with the activity of RCA in leaf. In mitochondria, the density of RCA changed abruptly in one day with the highest at 13:00 and it can well elucidate why the activities of Rubisco declined at noon when its amount was increasing. Therefore the cellular localization and/or distribution of Rubisco and RCA during a day is more important for Pn, Rubisco and RCA activities.展开更多
With indica ( Oryza sativa L.) hybrid Shanyou 63 as control, the hybrid rice varieties including Peiai 64S/E32, Peiai 64S/9311, X07S/Zihui 100, Guangyou 881 and japonica 9516 were used to study changes of chlorophyll ...With indica ( Oryza sativa L.) hybrid Shanyou 63 as control, the hybrid rice varieties including Peiai 64S/E32, Peiai 64S/9311, X07S/Zihui 100, Guangyou 881 and japonica 9516 were used to study changes of chlorophyll content, photosynthetic response to light intensity and temperature, chlorophyll fluorescence characteristics and membrane lipid peroxidation in their flag leaves at the late stage of development under natural conditions in Nanjing. The results were as follows:. primary photochemical efficiency of PS II ( F-v / F-m), quantum yield of linear electron transport of PS II (phi(PSII)), electron transfer rate (ETR) in these rice varieties decreased with their decrease of chlorophyll content during this period. This kind of impediment to energy conversion induced the transfer of excessive energy to the reducing side of PS I, hence the accumulation of O-2(radical anion) and peroxidation of membrane lipid, and resulting in the accumulation of malondialdehyde (MDA), that is the destroys of photosynthetic pigments and membranes and the consequent, premature senescence. This phenomenon is variable conspicuously in different rice varieties. Under natural condition in Nanjing, F-v/F-m, phi(PSII), ETR and quenching coefficient ( qP) in japonica 9516 tolerant to photooxidation decreased less and the conversion capacity of light energy was stable, premature senescence was unlikely, and consequently the seed-setting rate was higher. While F-v/F-m, phi(PSII), ETR and photochemical qP in Shanyou 63 sensitive to photooxidation decreased more and therefore premature senescence was easy to happen, thus the seed-setting rate and yield were all reduced. The tolerance to photooxidation and premature senescence in other hybrids derived from typical two line or three line crossing laid in the middle. From the rice breeding for super-high-yield, on the basis of the good plant-type of current rice, considering both hybrid vigor and the prevention premature senescence, it would be a notable strategy to use japonica maternal line or maternal. lines with some japonica genotype as the sterile lines in rice breeding.展开更多
In the present study, we investigated the changes of photosynthesis, chlorophyll fluorescence and the content of carotenoid pigments in rice (Oryza sativa L.) seedling leaves and their responses to high light. The res...In the present study, we investigated the changes of photosynthesis, chlorophyll fluorescence and the content of carotenoid pigments in rice (Oryza sativa L.) seedling leaves and their responses to high light. The results showed that the rate of photosynthesis, the contents of individual and total carotenoids and the pool size of xanthophyll cycle decreased with age increasing of the leaf. When the leaves were exposed to high light for 2 h, the qN of mature leaf (5th leaf) increased more significantly than that of younger (6th leaf) and older leaves (3rd and 4th leaf). Comparing with the leaves before exposure to high light, the excitation pressure on PSⅡ (1- qP ) increased by 44%, 57%, 19% and 45% in the 3rd, 4th, 5th and 6th leaf under high light, respectively. The highest content of carotenoids and the greatest conversion of violaxanthin to zeaxanthin were found in the 5th leaf, and it was consistent with the 5th leaf exhibiting the strongest resistance to high light. Our results suggested that the ability of rice leaf to resist photoinhibition is related to the level of carotenoids and the ability of carotenoids biosynthesis.展开更多
Quantitative trait loci (QTLs) for chlorophyll content of a rice leaf weremapped on to the molecular marker linkage map of a double-haploid (DH) population derived from across between two rice varieties 'IR64'...Quantitative trait loci (QTLs) for chlorophyll content of a rice leaf weremapped on to the molecular marker linkage map of a double-haploid (DH) population derived from across between two rice varieties 'IR64' and 'Azucena' in both nutrient solutionand soil cultureexperiments to detect rice nitrogen nutrition status under low N stress A chlorophyll meter was usedto measure the soil plant analysis development (SPAD) value of the topmost fully expanded leaf asthe index of chlorophyll content thatexpressed nitrogen status in rice plants. Totally 3 QTLs forSPAD values, two on chromosome 3 located at interval RG179-CDO337 and RG348-RZ329, respectively, andone on chromosome 10 at interval RZ500-RG134, were detected under stressed conditions of low N inthe soil and/or nutrient solution culture experiments. One QTL located at interval RG179-GDO337 onchromosome 3 associated with a relative change in SPAD value from a high N level to a low N level inthe soil culture experiment was also detected.Based on the different responses to low N stressbetween the two parents, it was supposed that the QTLs identified in this study associated withnitrogen efficiency in rice at low N levels might be useful in applying marker technology to ricebreeding programs.展开更多
The objective of this study was to investigate the effects of different nutri-ent application models on the contents of chlorophyl and carotenoid in the functional leaves of early rice. Using rice cultivar Xiangzaoxia...The objective of this study was to investigate the effects of different nutri-ent application models on the contents of chlorophyl and carotenoid in the functional leaves of early rice. Using rice cultivar Xiangzaoxian45 as experimental materials, the experiment was performed by designing 6 treatments, i.e., T1 (fertilization without nitrogen), T2(local conventional fertilization), T3(fertilization for high yield and high effi-ciency), T4 (fertilization for super high yield), T5 (fertilization application for super high yield and high efficiency A) and T6 (fertilization application for super high yield and high efficiency B) in two experimental plots Yiyang and Xiangyin. The results showed that T3 respectively increased the contents of chlorophyl and carotenoid at fil ing stage by 29.27%, 38.20% and 13.16%, 30.12% in Yiyang and Xiangyin, as wel as yield of early rice by 4.20%, 4.80% to T2 on the condition of saving 20% ni-trogen fertilizer. Additional y, T5 and T6 on the condition of saving 16.7% nitrogen fertilizer by T4 increased the contents of chlorophyl and carotenoid of fil ing stage by 53.91%, 53.73% and 35.95%, 37.47% in Yiyang and Xiangyin, as wel as yield of early rice by 16.60%, 18.75% to T2 in Yiyang; increased the contents of chlorophyl and carotenoid at fil ing stage by 57.82%, 56.80% and 54.88%, 57.03% in Yiyang and Xiangyin, as wel as yield of early rice 10.10%, 6.75% to T2 in Xiangyin. More-over, there was a significant correlation or an extremely significant correlation be-tween yield and the contents of chlorophyl and carotenoid at different soil fertility level (P〈0.05 or P〈0.01). Therefore, nutrient application plays an important role in the contents of chlorophyl and carotenoid in the functional leaves of early rice.展开更多
Plastids of nongreen tissues import carbon as a source of biosynthetic pathways and energy, and glucose 6 phosphate is the preferred hexose phosphate taken up by nongreen plastids. A cDNA clone encoding glucose 6 ph...Plastids of nongreen tissues import carbon as a source of biosynthetic pathways and energy, and glucose 6 phosphate is the preferred hexose phosphate taken up by nongreen plastids. A cDNA clone encoding glucose 6 phosphate/phosphate translocator ( GPT ) was isolated from a cDNA library of immature seeds of rice and named as OsGPT . The cDNA has one uninterrupted open reading frame encoding a 42 kDa polypeptide possessing transit peptide consisting of 70 amino acid residues. The OsGPT gene maps on chromosome 8 of rice and is linked to the quantitative trait locus for 1000 grain weight. The expression of OsGPT is mainly restricted to heterotrophic tissues. These results suggest that glucose 6 phosphate imported via GPT can be used for starch biosynthesis in rice nongreen plastids.展开更多
This research was to examine if rice (Oryza sativa L.), a monocotyledon of angiosperm, was able to synthesize chlorophyll (Chl) in complete darkness. Five-cm-tall etiolated seedlings of rice were used as starting mate...This research was to examine if rice (Oryza sativa L.), a monocotyledon of angiosperm, was able to synthesize chlorophyll (Chl) in complete darkness. Five-cm-tall etiolated seedlings of rice were used as starting materials and treated with or without various concentrations of glucose and/or δ-aminolevulinic acid (ALA) in the dark. Leaves harvested at the indicated time were determined for their contents of Chl, protoporphyrin Ⅸ (Proto), Mg-protoporphyrin Ⅸ (Mg-Proto) and protochlorophyllide (Pchlide). The mole percentage of porphyrin was calculated. The Chl content in the etiolated rice seedlings slightly increased from about 2.5 μg/g to 7.5 μg/g within 12 d in the dark, but the total Chl of dark-grown rice increased from 0.36 μg/g to 3.6 μg/g. While the mole percentages of Proto, Mg-Proto and Pchlide in the dark-grown seedlings without any treatment were about 65%, 27.5% and 7.5% at the beginning, respectively, those in the light-grown seedlings were about 42.5%, 35% and 22.5%, respectively. The mole percentage of porphyrin of etiolated seedlings resumed its normal ratio within 2 d after treatment with glucose. While the Chl content of etiolated seedlings grown in culture solution with 3% and 6% glucose increased 2.5 and 4.0 folds, respectively, those with 3% and 6% glucose and 1 mmol/L ALA increased 22 and 24 folds, respectively. It is concluded that angiosperm might be able to synthesize a small amount of Chl in complete darkness, that either glucose or ALA could stimulate dark Chl synthesis in angiosperm, and that a combination of glucose and ALA exhibited an additional effect. It is still unknown and remains to be further explored what is the mechanism of the effect of glucose and ALA on the Chl synthesis of rice in the dark.展开更多
The need to maintain high rice yields and improve fertilizer nitrogen(N)-use efficiency has fueled the use of tools such as leaf colour chart(LCC) and chlorophyll meter(SPAD meter) in managing fertilizer N based on co...The need to maintain high rice yields and improve fertilizer nitrogen(N)-use efficiency has fueled the use of tools such as leaf colour chart(LCC) and chlorophyll meter(SPAD meter) in managing fertilizer N based on colour of the leaf. Field experiments were conducted during 2011 to 2013 at Ludhiana, India to assess the need for basal N application and to establish critical threshold values of leaf greenness as measured by LCC and SPAD meter for formulating strategies for in-season management of fertilizer N in dry direct-seeded rice(DDSR). Avoiding application of N at sowing did not adversely affect rice grain yield, indicating that basal N application in DDSR was not necessary and might lead to reduced N-use efficiency. Monitoring N uptake rate during the growing season of DDSR suggested that N uptake rate peaked at the two growth stages: maximum tillering(42 to 56 days after sowing(DAS))and panicle initiation stages(70 to 84 DAS). Using the Cate-Nelson procedure, critical LCC and SPAD meter values for fertilizer N application worked out to be 4 and 37, respectively. Real-time fertilizer N management strategy based on applying 30 kg N ha-1whenever SPAD meter or LCC readings fell below the critical values maintained optimum rice yields along with higher N-use efficiency than that observed by following blanket recommendation for fertilizer N in the region. The fixed-time variable-dose strategy consisted of applying prescriptive doses of 20 kg N ha-1at 14 DAS and 30 kg N ha-1at 28 DAS and corrective doses of 30, 40 or 50 kg N ha-1at 49 and 70 DAS depending upon LCC shade to be ≥ 4, 4–3.5, or < 3.5 and SPAD meter readings to be ≥ 40, 40–35, or< 35, respectively. This strategy also resulted in optimal rice yield along with higher N-use efficiency as compared to the blanket recommendation. This study revealed that in DDSR, fertilizer N could be managed more efficiently using the tools of LCC and SPAD meter than the current blanket recommendation.展开更多
Rice leaf color mutants play a great role in research about the formation and development of chloroplasts and the genetic mechanism of the chlorophyll (Chl) metabolism pathway, pgl3 is a rice leaf color mutant deriv...Rice leaf color mutants play a great role in research about the formation and development of chloroplasts and the genetic mechanism of the chlorophyll (Chl) metabolism pathway, pgl3 is a rice leaf color mutant derived from Xiushuil 1 (Oryza sativa L. spp. japonica), treated with ethyl methane sulfonate (EMS). The mutant exhibited a pale- green leaf (pg/) phenotype throughout the whole development as well as reduced grain quality. Map-based cloning of PGL3 revealed that it encodes the chloroplast signal recognition particle 43 kDa protein (cpSRP43). PGL3 affected the Chl synthesis by regulating the expression levels of the Chl synthesis-associated genes. Considerable reactive oxygen species were accumulated in the leaves of pgl3, and the transcription levels of its scavenging genes were down- regulated, indicating that pgl3 can accelerate senescence. In addition, high temperatures could inhibit the plant's growth and facilitate the process of senescence in pgl3.展开更多
Green-revertible albino mutants are important sources for studying chloroplast structure, chloroplast development, chlorophyll biosynthesis, and plant photo- synthesis. In the present study, we characterized a green- ...Green-revertible albino mutants are important sources for studying chloroplast structure, chloroplast development, chlorophyll biosynthesis, and plant photo- synthesis. In the present study, we characterized a green- revertible albino mutant gra(k), which was obtained from the tissue-cultured rice Kitaake. The mutant gra(k) exhib- ited albino on its first three leaves. The leaf color started to turn green at the four-leaf stage. The chlorophyll contents were deeply reduced at the seedling stage, and the chloroplast development was delayed in gra(k). The green- revertible albino (gra) phenotype of the mutant gra(k) was temperature dependent. The main agronomic traits, including plant height, tilling number per plant, seed set- ting rate, and thousand-grain weight, slightly decreased in gra(k) comparing to those in the wild-type Kitaake. Genetic analysis showed that the gra phenotype was con- trolled by a single recessive nucleic gene. By using 5,168 recessive F2 individuals derived from the cross of gra(k) × Jodan, the locus of the gene Gra(k) was delimited in a DNA region of 200 kb between the makers B-31 and P11 on chromosome 5. Sequencing analysis indicated that the three functionally annotated genes, LOC_Os05g23700, LOC_Os05g23720, and LOC_Os05g23740, were all deleted in the 200 kb region in the mutant gra(k). Trans- genic test revealed that the gra(k) plants over-expressing LOC_Os05g23740CDS were restored to normal green as the wild-type Kitaake. Our results proved that the deletion of the DnaK protein gene LOC_Os05g23740 (encoding the chaperon protein OsHsp70CP1) led to the gra phenotype in the mutant gra(k).展开更多
The class III homeodomain-leucine zipper(HD-Zip III)gene family plays important roles in plant growth and development,including regulation of apical embryo patterning,embryonic shoot meristem formation,leaf polarity,v...The class III homeodomain-leucine zipper(HD-Zip III)gene family plays important roles in plant growth and development,including regulation of apical embryo patterning,embryonic shoot meristem formation,leaf polarity,vascular development,and meristem function,with a particularly crucial function in leaf development.Although HD-Zip III members are highly conserved in land plants,previous studies,such as genetic analyses based on multiple mutants in Arabidopsis and other plants,suggest that various HD-Zip III family genes have evolved with distinct functions and pleiotropic effects on plant growth and development.In this study,we analyzed a HD-Zip III member,OsHox33,and demonstrated that it plays an important role in age-dependent leaf senescence in rice.We constructed two specific RNAi vectors derived from the 5′-end region and 3′-UTR of OsHox33 to knockdown its expression.Transgenic plants harboring either RNAi construct displayed similar phenotypes of precocious leaf senescence symptoms,suggesting that knockdown of OsHox33 accelerates leaf senescence in rice.pOsHox33::GUS fusion expression and RT-PCR revealed that OsHox33 is highly expressed in young organs,especially in young meristems such as shoot apical meristems,intercalary meristems,and young callus.In addition,real-time PCR indicated that OsHox33 was more highly expressed in young leaves than in old leaves.To further investigate OsHox33 function,we analyzed chloroplast ultrastructure in different-aged leaves of RNAi plants,and found that OsHox33 knockdown accelerated chloroplast degradation,which is consistent with RNAi phenotypes.Finally,real-time PCR studies showed that OsHox33 can regulate the expression of GS1 and GS2,two senescence-associated genes.Taken together,the work presented here provides new insights into the function of HD-Zip III members in plants.展开更多
文摘Spraying 1-2 mmol/L solution of NaHSO 3 on rice ( Oryza sativa L.) leaves resulted in the enhancement of net photosynthetic rate for more than three days. It was also observed that NaHSO 3 application caused increases both in ATP content in leaves and the millisecond_delayed light emission of leaves. The increase in net photosynthetic rate caused by NaHSO 3 treatment was similar to that by PMS (phenazine methosulfate) treatment. The grain yield of treated rice was enhanced approximately by 10% after duplicated application of NaHSO 3 in milk_ripening stage. It is suggested that the enhancement of photosynthesis by NaHSO 3 treatment resulted from the effect of increasing ATP supplement. Concomitant with an increase in the photosynthetic rate and ATP content in leaves, the transient increase in chlorophyll fluorescence after the termination of actinic light, which could be used as an index of the cyclic electron flow, was also enhanced by low concentration of NaHSO 3 treatment. Basing on these results it is proposed that the increase in rice photosynthesis caused by low concentrations of NaHSO 3 could be due to the stimulation of the cyclic electron flow around PSⅠ which in turn the enhancement of the coupled photophosphorylation and photosynthesis.
文摘A high yielding rice mutant ( Oryza sativa L. cv. Zhenhui 249) with low chlorophyll b was recently discovered in the field. The mutant was mainly characterized by the decrease of the content of extrinsic antennae complex. This variation was shown in the stage when the leaves were expanding. When the leaves are at the final developmental stage, the content would approach to that of the wild type. It was discovered that only moderate amount of chlorophyll b decreased in this mutant. The photosynthetic apparatus of the mutant was rather stable in the whole life span of the leaf. The extrinsic antennae complex of the mutant might make efficient use of light and meanwhile reduce the production of O -· 2.
基金Supported by Program for New Century Excellent Talents in University(NCET-04-0907)the Innovative Research Team in University (IRT0453)~~
文摘[Objective] The experiment aimed to explore physiological and biochemical changes of leaves after plants were mutated. [Method] A rice double mutant with stripes on stems, leaves and spikelets were taken as experimental materials to study the enzyme activity changes in different growth stages and amino acid variation in rice. [ Result] The SOD activity in mutant was higher than that in wild plant at tillering metaphase, but lower than that in wild type before heading stage and late flowering; the POD activity in three stages increased firstly then declined and the activity showed highest maximal activity at before heading stage. However, the POD activity in wild type showed the opposite change trend; the CAT activity presented degression at three stages, especially high at tillering metaphase, but reverse changes in wild type; the MDA activity decreased at three stages, but it was still higher than that in wild type, besides, the soluble sugar content of mutant was lower, but total amino acid content was increased. [ Conclusion] The expression of mutant characteristics was correlated with SOD, POD, CAT and MDA activity Changes and these changes made the mutant survive and rice quality change at last.
文摘Using various high-yield rices (Oryza sativa L.) such as japonica cultivar 9516, two parental line hybrid rice between subspecies with more japonica element Peiai 64/E32, Liangyoupeijiu (Peiai 64/9311), and indica hybrid rices X07S/Zihui 100, Gangyou 881, Shanyou 63 as the materials, the characteristics of chlorophyll fluorescence and membrane-lipid peroxidation of detached leaves at booting stage under photooxidation conditions were studied. In comparison with indica hybrid rice, after the photooxidation treatment, the primary photochemical efficiency of PS II (F-v/F-m), quantum yield of linear electron transport of PS II (Phi(PSII)) and photochemical quenching coefficient (qP) in japonica cultivar and hybrid rice with japonica decreased less. This indicated that high-yield rice with japonica was able to maintain higher capability of light energy conversion, resulting in the alleviation of photoinhibition. Meanwhile, the higher activities of protective enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) led to the less accumulation of endogenous active oxygen (O-(2)(radical anion), H2O2) and less content of the malondialdehyde (MDA) and the less decline of chlorophyll and protein contents, indicating a stronger tolerance to photooxidation. The changes in contents of chlorophyll and protein among various nee cultivars during photooxidation treatment were consistent with the decline of chlorophyll content from heading stage to maturation stage under natural conditions. Statistical analysis showed that there was a significant correlation between the indexes of tolerance to photooxidation and the rate of seed setting, implying that the cultivar tolerated to photooxidation had higher resistance to early aging of leaf. These results suggested that from a view of superhigh-yield breeding, considering both the utilization of heterosis and the resistance to early aging of leaf, introduction of japonica element tolerating to photooxidation into the rice sterile line (maternal plant) is a breeding strategy worthy to pay great attention to.
文摘The cellular localization of Rubisco and Rubisco activase (RCA) in rice (Oryza sativa subsp. indica cv. Zhenong 952) leaf was investigated with immunogold-labeled electron microscope techniques on the basis of determining the diurnal changes of photosynthetic rate (Pn), Rubisco and RCA activities, and quantifying two enzyme contents in the leaf with immuno-diffusion method in order to understand why RCA activity decreased in the midday when its contents was high. The results showed that Rubisco mainly was located in chloroplast, and RCA were found both in chloroplast and mitochondria. The lowering of Rubisco in chloroplast as well as Rubisco activity at noon could be one of good reasons to explain the photosynthetic midday depression in leaf. The density of RCA in chloroplast reached the maximum at 14:00 and a valley at 11:00. The result much coincided with the activity of RCA in leaf. In mitochondria, the density of RCA changed abruptly in one day with the highest at 13:00 and it can well elucidate why the activities of Rubisco declined at noon when its amount was increasing. Therefore the cellular localization and/or distribution of Rubisco and RCA during a day is more important for Pn, Rubisco and RCA activities.
文摘With indica ( Oryza sativa L.) hybrid Shanyou 63 as control, the hybrid rice varieties including Peiai 64S/E32, Peiai 64S/9311, X07S/Zihui 100, Guangyou 881 and japonica 9516 were used to study changes of chlorophyll content, photosynthetic response to light intensity and temperature, chlorophyll fluorescence characteristics and membrane lipid peroxidation in their flag leaves at the late stage of development under natural conditions in Nanjing. The results were as follows:. primary photochemical efficiency of PS II ( F-v / F-m), quantum yield of linear electron transport of PS II (phi(PSII)), electron transfer rate (ETR) in these rice varieties decreased with their decrease of chlorophyll content during this period. This kind of impediment to energy conversion induced the transfer of excessive energy to the reducing side of PS I, hence the accumulation of O-2(radical anion) and peroxidation of membrane lipid, and resulting in the accumulation of malondialdehyde (MDA), that is the destroys of photosynthetic pigments and membranes and the consequent, premature senescence. This phenomenon is variable conspicuously in different rice varieties. Under natural condition in Nanjing, F-v/F-m, phi(PSII), ETR and quenching coefficient ( qP) in japonica 9516 tolerant to photooxidation decreased less and the conversion capacity of light energy was stable, premature senescence was unlikely, and consequently the seed-setting rate was higher. While F-v/F-m, phi(PSII), ETR and photochemical qP in Shanyou 63 sensitive to photooxidation decreased more and therefore premature senescence was easy to happen, thus the seed-setting rate and yield were all reduced. The tolerance to photooxidation and premature senescence in other hybrids derived from typical two line or three line crossing laid in the middle. From the rice breeding for super-high-yield, on the basis of the good plant-type of current rice, considering both hybrid vigor and the prevention premature senescence, it would be a notable strategy to use japonica maternal line or maternal. lines with some japonica genotype as the sterile lines in rice breeding.
文摘In the present study, we investigated the changes of photosynthesis, chlorophyll fluorescence and the content of carotenoid pigments in rice (Oryza sativa L.) seedling leaves and their responses to high light. The results showed that the rate of photosynthesis, the contents of individual and total carotenoids and the pool size of xanthophyll cycle decreased with age increasing of the leaf. When the leaves were exposed to high light for 2 h, the qN of mature leaf (5th leaf) increased more significantly than that of younger (6th leaf) and older leaves (3rd and 4th leaf). Comparing with the leaves before exposure to high light, the excitation pressure on PSⅡ (1- qP ) increased by 44%, 57%, 19% and 45% in the 3rd, 4th, 5th and 6th leaf under high light, respectively. The highest content of carotenoids and the greatest conversion of violaxanthin to zeaxanthin were found in the 5th leaf, and it was consistent with the 5th leaf exhibiting the strongest resistance to high light. Our results suggested that the ability of rice leaf to resist photoinhibition is related to the level of carotenoids and the ability of carotenoids biosynthesis.
基金Project supported by the National Natural Science Foundation of China (No. 30070443).
文摘Quantitative trait loci (QTLs) for chlorophyll content of a rice leaf weremapped on to the molecular marker linkage map of a double-haploid (DH) population derived from across between two rice varieties 'IR64' and 'Azucena' in both nutrient solutionand soil cultureexperiments to detect rice nitrogen nutrition status under low N stress A chlorophyll meter was usedto measure the soil plant analysis development (SPAD) value of the topmost fully expanded leaf asthe index of chlorophyll content thatexpressed nitrogen status in rice plants. Totally 3 QTLs forSPAD values, two on chromosome 3 located at interval RG179-CDO337 and RG348-RZ329, respectively, andone on chromosome 10 at interval RZ500-RG134, were detected under stressed conditions of low N inthe soil and/or nutrient solution culture experiments. One QTL located at interval RG179-GDO337 onchromosome 3 associated with a relative change in SPAD value from a high N level to a low N level inthe soil culture experiment was also detected.Based on the different responses to low N stressbetween the two parents, it was supposed that the QTLs identified in this study associated withnitrogen efficiency in rice at low N levels might be useful in applying marker technology to ricebreeding programs.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201103003)National "Twelfth Five-Year" Plan for Science & Technology Support(2012BAD15B04)+1 种基金Innovation Platform of Open Fund Project for Universities in Hunan Province(13K061)Natural Science Foundation of Hunan Province(12JJ6016)~~
文摘The objective of this study was to investigate the effects of different nutri-ent application models on the contents of chlorophyl and carotenoid in the functional leaves of early rice. Using rice cultivar Xiangzaoxian45 as experimental materials, the experiment was performed by designing 6 treatments, i.e., T1 (fertilization without nitrogen), T2(local conventional fertilization), T3(fertilization for high yield and high effi-ciency), T4 (fertilization for super high yield), T5 (fertilization application for super high yield and high efficiency A) and T6 (fertilization application for super high yield and high efficiency B) in two experimental plots Yiyang and Xiangyin. The results showed that T3 respectively increased the contents of chlorophyl and carotenoid at fil ing stage by 29.27%, 38.20% and 13.16%, 30.12% in Yiyang and Xiangyin, as wel as yield of early rice by 4.20%, 4.80% to T2 on the condition of saving 20% ni-trogen fertilizer. Additional y, T5 and T6 on the condition of saving 16.7% nitrogen fertilizer by T4 increased the contents of chlorophyl and carotenoid of fil ing stage by 53.91%, 53.73% and 35.95%, 37.47% in Yiyang and Xiangyin, as wel as yield of early rice by 16.60%, 18.75% to T2 in Yiyang; increased the contents of chlorophyl and carotenoid at fil ing stage by 57.82%, 56.80% and 54.88%, 57.03% in Yiyang and Xiangyin, as wel as yield of early rice 10.10%, 6.75% to T2 in Xiangyin. More-over, there was a significant correlation or an extremely significant correlation be-tween yield and the contents of chlorophyl and carotenoid at different soil fertility level (P〈0.05 or P〈0.01). Therefore, nutrient application plays an important role in the contents of chlorophyl and carotenoid in the functional leaves of early rice.
文摘Plastids of nongreen tissues import carbon as a source of biosynthetic pathways and energy, and glucose 6 phosphate is the preferred hexose phosphate taken up by nongreen plastids. A cDNA clone encoding glucose 6 phosphate/phosphate translocator ( GPT ) was isolated from a cDNA library of immature seeds of rice and named as OsGPT . The cDNA has one uninterrupted open reading frame encoding a 42 kDa polypeptide possessing transit peptide consisting of 70 amino acid residues. The OsGPT gene maps on chromosome 8 of rice and is linked to the quantitative trait locus for 1000 grain weight. The expression of OsGPT is mainly restricted to heterotrophic tissues. These results suggest that glucose 6 phosphate imported via GPT can be used for starch biosynthesis in rice nongreen plastids.
文摘This research was to examine if rice (Oryza sativa L.), a monocotyledon of angiosperm, was able to synthesize chlorophyll (Chl) in complete darkness. Five-cm-tall etiolated seedlings of rice were used as starting materials and treated with or without various concentrations of glucose and/or δ-aminolevulinic acid (ALA) in the dark. Leaves harvested at the indicated time were determined for their contents of Chl, protoporphyrin Ⅸ (Proto), Mg-protoporphyrin Ⅸ (Mg-Proto) and protochlorophyllide (Pchlide). The mole percentage of porphyrin was calculated. The Chl content in the etiolated rice seedlings slightly increased from about 2.5 μg/g to 7.5 μg/g within 12 d in the dark, but the total Chl of dark-grown rice increased from 0.36 μg/g to 3.6 μg/g. While the mole percentages of Proto, Mg-Proto and Pchlide in the dark-grown seedlings without any treatment were about 65%, 27.5% and 7.5% at the beginning, respectively, those in the light-grown seedlings were about 42.5%, 35% and 22.5%, respectively. The mole percentage of porphyrin of etiolated seedlings resumed its normal ratio within 2 d after treatment with glucose. While the Chl content of etiolated seedlings grown in culture solution with 3% and 6% glucose increased 2.5 and 4.0 folds, respectively, those with 3% and 6% glucose and 1 mmol/L ALA increased 22 and 24 folds, respectively. It is concluded that angiosperm might be able to synthesize a small amount of Chl in complete darkness, that either glucose or ALA could stimulate dark Chl synthesis in angiosperm, and that a combination of glucose and ALA exhibited an additional effect. It is still unknown and remains to be further explored what is the mechanism of the effect of glucose and ALA on the Chl synthesis of rice in the dark.
基金supported by the Indian Council of Cultural Relations and Egypt Government through the Cultural Exchange Programme
文摘The need to maintain high rice yields and improve fertilizer nitrogen(N)-use efficiency has fueled the use of tools such as leaf colour chart(LCC) and chlorophyll meter(SPAD meter) in managing fertilizer N based on colour of the leaf. Field experiments were conducted during 2011 to 2013 at Ludhiana, India to assess the need for basal N application and to establish critical threshold values of leaf greenness as measured by LCC and SPAD meter for formulating strategies for in-season management of fertilizer N in dry direct-seeded rice(DDSR). Avoiding application of N at sowing did not adversely affect rice grain yield, indicating that basal N application in DDSR was not necessary and might lead to reduced N-use efficiency. Monitoring N uptake rate during the growing season of DDSR suggested that N uptake rate peaked at the two growth stages: maximum tillering(42 to 56 days after sowing(DAS))and panicle initiation stages(70 to 84 DAS). Using the Cate-Nelson procedure, critical LCC and SPAD meter values for fertilizer N application worked out to be 4 and 37, respectively. Real-time fertilizer N management strategy based on applying 30 kg N ha-1whenever SPAD meter or LCC readings fell below the critical values maintained optimum rice yields along with higher N-use efficiency than that observed by following blanket recommendation for fertilizer N in the region. The fixed-time variable-dose strategy consisted of applying prescriptive doses of 20 kg N ha-1at 14 DAS and 30 kg N ha-1at 28 DAS and corrective doses of 30, 40 or 50 kg N ha-1at 49 and 70 DAS depending upon LCC shade to be ≥ 4, 4–3.5, or < 3.5 and SPAD meter readings to be ≥ 40, 40–35, or< 35, respectively. This strategy also resulted in optimal rice yield along with higher N-use efficiency as compared to the blanket recommendation. This study revealed that in DDSR, fertilizer N could be managed more efficiently using the tools of LCC and SPAD meter than the current blanket recommendation.
基金Project supported by the National Natural Science Foundation of China(No.31521064)the Chinese Academy of Agricultural Sciences(No.CAAS-ASTIP-201X-CNRRI)the Zhejiang Provincial Natural Science Foundation of China(Nos.LQ15C130001 and LY16C060003)
文摘Rice leaf color mutants play a great role in research about the formation and development of chloroplasts and the genetic mechanism of the chlorophyll (Chl) metabolism pathway, pgl3 is a rice leaf color mutant derived from Xiushuil 1 (Oryza sativa L. spp. japonica), treated with ethyl methane sulfonate (EMS). The mutant exhibited a pale- green leaf (pg/) phenotype throughout the whole development as well as reduced grain quality. Map-based cloning of PGL3 revealed that it encodes the chloroplast signal recognition particle 43 kDa protein (cpSRP43). PGL3 affected the Chl synthesis by regulating the expression levels of the Chl synthesis-associated genes. Considerable reactive oxygen species were accumulated in the leaves of pgl3, and the transcription levels of its scavenging genes were down- regulated, indicating that pgl3 can accelerate senescence. In addition, high temperatures could inhibit the plant's growth and facilitate the process of senescence in pgl3.
基金supported by the National Natural Science Foundation of China(3117162231371705+5 种基金314013531501627)the‘‘Hundred Talents Plan’’Foundation of Sichuanand the Specialized Research Funds for Doctoral Program of Higher Education(2012510312001120135103120004)the Key Project of Sichuan Education Department(15ZA0020)
文摘Green-revertible albino mutants are important sources for studying chloroplast structure, chloroplast development, chlorophyll biosynthesis, and plant photo- synthesis. In the present study, we characterized a green- revertible albino mutant gra(k), which was obtained from the tissue-cultured rice Kitaake. The mutant gra(k) exhib- ited albino on its first three leaves. The leaf color started to turn green at the four-leaf stage. The chlorophyll contents were deeply reduced at the seedling stage, and the chloroplast development was delayed in gra(k). The green- revertible albino (gra) phenotype of the mutant gra(k) was temperature dependent. The main agronomic traits, including plant height, tilling number per plant, seed set- ting rate, and thousand-grain weight, slightly decreased in gra(k) comparing to those in the wild-type Kitaake. Genetic analysis showed that the gra phenotype was con- trolled by a single recessive nucleic gene. By using 5,168 recessive F2 individuals derived from the cross of gra(k) × Jodan, the locus of the gene Gra(k) was delimited in a DNA region of 200 kb between the makers B-31 and P11 on chromosome 5. Sequencing analysis indicated that the three functionally annotated genes, LOC_Os05g23700, LOC_Os05g23720, and LOC_Os05g23740, were all deleted in the 200 kb region in the mutant gra(k). Trans- genic test revealed that the gra(k) plants over-expressing LOC_Os05g23740CDS were restored to normal green as the wild-type Kitaake. Our results proved that the deletion of the DnaK protein gene LOC_Os05g23740 (encoding the chaperon protein OsHsp70CP1) led to the gra phenotype in the mutant gra(k).
基金supported by the National Natural Science Foundation of China(31171515)the Tianjin Natural Science Foundation of China(11JCZDJC17900)the Knowledge Innovation and Training Program of Tianjin,Tianjin Municipal Education Commission(2013-1-2015-12)
文摘The class III homeodomain-leucine zipper(HD-Zip III)gene family plays important roles in plant growth and development,including regulation of apical embryo patterning,embryonic shoot meristem formation,leaf polarity,vascular development,and meristem function,with a particularly crucial function in leaf development.Although HD-Zip III members are highly conserved in land plants,previous studies,such as genetic analyses based on multiple mutants in Arabidopsis and other plants,suggest that various HD-Zip III family genes have evolved with distinct functions and pleiotropic effects on plant growth and development.In this study,we analyzed a HD-Zip III member,OsHox33,and demonstrated that it plays an important role in age-dependent leaf senescence in rice.We constructed two specific RNAi vectors derived from the 5′-end region and 3′-UTR of OsHox33 to knockdown its expression.Transgenic plants harboring either RNAi construct displayed similar phenotypes of precocious leaf senescence symptoms,suggesting that knockdown of OsHox33 accelerates leaf senescence in rice.pOsHox33::GUS fusion expression and RT-PCR revealed that OsHox33 is highly expressed in young organs,especially in young meristems such as shoot apical meristems,intercalary meristems,and young callus.In addition,real-time PCR indicated that OsHox33 was more highly expressed in young leaves than in old leaves.To further investigate OsHox33 function,we analyzed chloroplast ultrastructure in different-aged leaves of RNAi plants,and found that OsHox33 knockdown accelerated chloroplast degradation,which is consistent with RNAi phenotypes.Finally,real-time PCR studies showed that OsHox33 can regulate the expression of GS1 and GS2,two senescence-associated genes.Taken together,the work presented here provides new insights into the function of HD-Zip III members in plants.