Marine-derived Bacillus strains have been proved to be a very promising source for natural product leads.However,transformation of environmental strains is much more difficult than that of domesticated strains.Here,we...Marine-derived Bacillus strains have been proved to be a very promising source for natural product leads.However,transformation of environmental strains is much more difficult than that of domesticated strains.Here,we report the development of an efficient and robust electroporation-based transformation system for marine-derived Bacillus marinus B-9987,which is a macrolactin antibiotics producer and a very promising biological control agent against fungal plant diseases.The transformation efficiency was greatly enhanced 103-fold by using unmethylated plasmid to bypass modification-restriction barrier,and using glycine betaine to protect cells from electrical damages during electroporation.Addition of HEPES and 2 mmol L?1MgCl2 further improved the efficiency by additional 2-fold,with a maximum value of 7.1×104 cfu/μg pHT3101.To demonstrate the feasibility and efficiency of the protocol,a green fluorescent protein reporter system was constructed;furthermore,phosphopantetheinyl transferase gene sfp,which is essential to the biosynthesis of polyketides and nonribosomal peptides,was overexpressed in B-9987,leading to increased production of macrolactin A by about 1.6-fold.In addition,this protocol is also applicable to marine-derived Bacillus licheniforms EI-34-6,indicating it could be a reference for other undomesticated Bacillus strains.To our knowledge,this is the first report regarding the transformation of marine-derived Bacillus strain.展开更多
基金supported by grants from the National Natural Science Foundation of China (31070072,31171201)the Program for New Century Excellent Talents in University (NCET-0900717)partially supported by the National Key Technologies Research and Development Program (2011BAE06B04)
文摘Marine-derived Bacillus strains have been proved to be a very promising source for natural product leads.However,transformation of environmental strains is much more difficult than that of domesticated strains.Here,we report the development of an efficient and robust electroporation-based transformation system for marine-derived Bacillus marinus B-9987,which is a macrolactin antibiotics producer and a very promising biological control agent against fungal plant diseases.The transformation efficiency was greatly enhanced 103-fold by using unmethylated plasmid to bypass modification-restriction barrier,and using glycine betaine to protect cells from electrical damages during electroporation.Addition of HEPES and 2 mmol L?1MgCl2 further improved the efficiency by additional 2-fold,with a maximum value of 7.1×104 cfu/μg pHT3101.To demonstrate the feasibility and efficiency of the protocol,a green fluorescent protein reporter system was constructed;furthermore,phosphopantetheinyl transferase gene sfp,which is essential to the biosynthesis of polyketides and nonribosomal peptides,was overexpressed in B-9987,leading to increased production of macrolactin A by about 1.6-fold.In addition,this protocol is also applicable to marine-derived Bacillus licheniforms EI-34-6,indicating it could be a reference for other undomesticated Bacillus strains.To our knowledge,this is the first report regarding the transformation of marine-derived Bacillus strain.