The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, re...The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, respectively when the hydraulic loading rates varied from 016m·h^-1 to 1.4m·h^-1. The greatest partof removal, for example more than 80% of COD removal, occurred on the top 100cm of the media in BAF. The kinetic .performance of BAF indicated that the relationship of BOD removal efficiency with the hydraulic loadingrates, in biological aerated filters could be described by c1/c1=l-exp(-2.44/L^0.59). This equation could be used topredict the B OD.removal efficiency at different hydraulic loading rates.展开更多
Green fluorescent protein (GFP) and its variants /homolog proteins are generally called as GFP-like fluorescent proteins (FPs), which are widely used as visible molecular tools for monitoring a wide range of biologica...Green fluorescent protein (GFP) and its variants /homolog proteins are generally called as GFP-like fluorescent proteins (FPs), which are widely used as visible molecular tools for monitoring a wide range of biological processes due to their capability of simple, accurate and real time quantification. The FPs-based molecular and visible quantification tools are giving more impact on bioprocess engineering, enabling the biomolecule-level dynamic information to be linked with the process-level events. In this review, different applications of FPs in biological engineering with emphasis on rapid molecular bioprocess quantification, such as quantification of the transcription efficiency, the protein production, the protein folding efficiency, the cell concentration, the intracellular microenvironments and so on, would be first introduced. The challenges of using FPs with respect to actual bioprocess applications for the precise quantification including the interaction of FPs and the fused partner proteins, the maturation of FPs, the inner filter effect and sensing technology were then discussed. Finally, the future development for the FPs used in molecular bioprocess quantification would be proposed.展开更多
基金Supported by the National Natural Science Foundation of China (No.59978020).
文摘The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, respectively when the hydraulic loading rates varied from 016m·h^-1 to 1.4m·h^-1. The greatest partof removal, for example more than 80% of COD removal, occurred on the top 100cm of the media in BAF. The kinetic .performance of BAF indicated that the relationship of BOD removal efficiency with the hydraulic loadingrates, in biological aerated filters could be described by c1/c1=l-exp(-2.44/L^0.59). This equation could be used topredict the B OD.removal efficiency at different hydraulic loading rates.
基金Supported by the National Natural Science Foundation of China (20836004 20806046) the Special Fund for Major State Basic Research Program of China (2009CB724702) the National High Technology Research and Development Program ofChina (2009AA062903)
文摘Green fluorescent protein (GFP) and its variants /homolog proteins are generally called as GFP-like fluorescent proteins (FPs), which are widely used as visible molecular tools for monitoring a wide range of biological processes due to their capability of simple, accurate and real time quantification. The FPs-based molecular and visible quantification tools are giving more impact on bioprocess engineering, enabling the biomolecule-level dynamic information to be linked with the process-level events. In this review, different applications of FPs in biological engineering with emphasis on rapid molecular bioprocess quantification, such as quantification of the transcription efficiency, the protein production, the protein folding efficiency, the cell concentration, the intracellular microenvironments and so on, would be first introduced. The challenges of using FPs with respect to actual bioprocess applications for the precise quantification including the interaction of FPs and the fused partner proteins, the maturation of FPs, the inner filter effect and sensing technology were then discussed. Finally, the future development for the FPs used in molecular bioprocess quantification would be proposed.