A novel polysaccharide-bonded abrasive tool is proposed for the green machining of single-crystal sapphires.The prescription and manufacturing process of the proposed tool is designed,and the gelation property of poly...A novel polysaccharide-bonded abrasive tool is proposed for the green machining of single-crystal sapphires.The prescription and manufacturing process of the proposed tool is designed,and the gelation property of polysaccharide by microwave treatment is investigated.Abrasive tool samples are fabricated,and a machining experiment on a single-crystal sapphire is performed.It is found that the crystallinity of polysaccharide gel decreases as the proportion of cross-linked polysaccharide increases.Abrasive tool samples with cross-linked polysaccharide present higher surface hardness.With the new abrasive tool,the surface quality of sapphire wafer can be significantly improved.This new tool with an abrasive to binder ratio of 2∶1 attains a material removal rate of 0.68μm/min.It is found that increasing the abrasive to binder ratio leads to better self-dressing performance but worse material removal ability and greater loss of abrasive tool materials.The validity of polysaccharide as an abrasive tool binder is preliminarily verified.展开更多
基金supported by the National Science Foundation of China (Nos.51605129,51705330)China Postdoctoral Science Foundation (No. 2015M581977)Anhui Provincial Natural Science Foundation(No.1708085ME109)。
文摘A novel polysaccharide-bonded abrasive tool is proposed for the green machining of single-crystal sapphires.The prescription and manufacturing process of the proposed tool is designed,and the gelation property of polysaccharide by microwave treatment is investigated.Abrasive tool samples are fabricated,and a machining experiment on a single-crystal sapphire is performed.It is found that the crystallinity of polysaccharide gel decreases as the proportion of cross-linked polysaccharide increases.Abrasive tool samples with cross-linked polysaccharide present higher surface hardness.With the new abrasive tool,the surface quality of sapphire wafer can be significantly improved.This new tool with an abrasive to binder ratio of 2∶1 attains a material removal rate of 0.68μm/min.It is found that increasing the abrasive to binder ratio leads to better self-dressing performance but worse material removal ability and greater loss of abrasive tool materials.The validity of polysaccharide as an abrasive tool binder is preliminarily verified.