The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite el...The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite element model for two-dimensional dynamic analysis of armored cable is presented. This model accounts for the geometric nonlinearities of large displacement of the armored cable, and effects of axial load and bending stiffness. The governing equations are derived by consistent linearization and finite element discretization of the total weak form of the armored cable system, and solved by the Newmark time integration method. To make the solution procedure avoid falling into the local extreme points, a simple adaptive stepping strategy is proposed. The presented model is validated via actual measured data. Results for dynamic configurations, motion and tension of both ends of the armored cable, and resonance-zone are presented for two numerical cases, including the dynamic analysis under the case of only ship heave motion and the case of joint action of ship heave motion and ocean current. The dynamics analysis can provide important reference for the design or product selection of the armored cable in a deep-sea ROV system so as to improve the safety of its marine operation under the sea state of 4 or above.展开更多
Both wave-frequency(WF) and low-frequency(LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system.This paper conducts a comprehensive investigation of applicable pro...Both wave-frequency(WF) and low-frequency(LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system.This paper conducts a comprehensive investigation of applicable probability density functions(PDFs) of mooring tension amplitudes used to assess mooring-line fatigue damage via the spectral method.Short-term statistical characteristics of mooring-line tension responses are firstly investigated,in which the discrepancy arising from Gaussian approximation is revealed by comparing kurtosis and skewness coefficients.Several distribution functions based on present analytical spectral methods are selected to express the statistical distribution of the mooring-line tension amplitudes.Results indicate that the Gamma-type distribution and a linear combination of Dirlik and Tovo-Benasciutti formulas are suitable for separate WF and LF mooring tension components.A novel parametric method based on nonlinear transformations and stochastic optimization is then proposed to increase the effectiveness of mooring-line fatigue assessment due to non-Gaussian bimodal tension responses.Using time domain simulation as a benchmark,its accuracy is further validated using a numerical case study of a moored semi-submersible platform.展开更多
Determining initial pretension values of pre-stressed cables is one of the key problems for a steel mega frame and pre-stressed composite bracing structure.Through the mechanical analysis of the composite bracing unde...Determining initial pretension values of pre-stressed cables is one of the key problems for a steel mega frame and pre-stressed composite bracing structure.Through the mechanical analysis of the composite bracing under vertical loading,the critical factors deciding the initial pretention value were found.According to these factors,a rule for the initial pretension value was put forward.The determination equations were acquired based on the principle of force equilibrium at nodes.The numerical results indicate that the internal force disequilibrium in composite bracings resulted from symmetrical load can be eliminated only in a symmetrical way,so that initial pretention values are decided only by vertical loads.The influencing coefficient leveling method,taking into account interactions between story and story,is accurate and feasible.展开更多
The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. ...The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.展开更多
基金Project(2008AA09Z201)supported by the National High Technology Research and Development Program of China
文摘The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite element model for two-dimensional dynamic analysis of armored cable is presented. This model accounts for the geometric nonlinearities of large displacement of the armored cable, and effects of axial load and bending stiffness. The governing equations are derived by consistent linearization and finite element discretization of the total weak form of the armored cable system, and solved by the Newmark time integration method. To make the solution procedure avoid falling into the local extreme points, a simple adaptive stepping strategy is proposed. The presented model is validated via actual measured data. Results for dynamic configurations, motion and tension of both ends of the armored cable, and resonance-zone are presented for two numerical cases, including the dynamic analysis under the case of only ship heave motion and the case of joint action of ship heave motion and ocean current. The dynamics analysis can provide important reference for the design or product selection of the armored cable in a deep-sea ROV system so as to improve the safety of its marine operation under the sea state of 4 or above.
基金the financial support of the Major Program of the National Natural Science Foundation of China(No.51490675)the National Science Fund for Distinguished Young Scholars(No.51625902)+1 种基金the Taishan Scholars Program of Shandong Provincethe Fundamental Research Funds for the Central Universities(No.841713035)
文摘Both wave-frequency(WF) and low-frequency(LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system.This paper conducts a comprehensive investigation of applicable probability density functions(PDFs) of mooring tension amplitudes used to assess mooring-line fatigue damage via the spectral method.Short-term statistical characteristics of mooring-line tension responses are firstly investigated,in which the discrepancy arising from Gaussian approximation is revealed by comparing kurtosis and skewness coefficients.Several distribution functions based on present analytical spectral methods are selected to express the statistical distribution of the mooring-line tension amplitudes.Results indicate that the Gamma-type distribution and a linear combination of Dirlik and Tovo-Benasciutti formulas are suitable for separate WF and LF mooring tension components.A novel parametric method based on nonlinear transformations and stochastic optimization is then proposed to increase the effectiveness of mooring-line fatigue assessment due to non-Gaussian bimodal tension responses.Using time domain simulation as a benchmark,its accuracy is further validated using a numerical case study of a moored semi-submersible platform.
基金Project of Ministry of Housing and Urban-Rural Development of China(No.2012-K2-28)
文摘Determining initial pretension values of pre-stressed cables is one of the key problems for a steel mega frame and pre-stressed composite bracing structure.Through the mechanical analysis of the composite bracing under vertical loading,the critical factors deciding the initial pretention value were found.According to these factors,a rule for the initial pretension value was put forward.The determination equations were acquired based on the principle of force equilibrium at nodes.The numerical results indicate that the internal force disequilibrium in composite bracings resulted from symmetrical load can be eliminated only in a symmetrical way,so that initial pretention values are decided only by vertical loads.The influencing coefficient leveling method,taking into account interactions between story and story,is accurate and feasible.
文摘The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.