A cable net structure is selected to support its reflecting triangular aluminum panels of FAST(five-hundred-meter aperture spherical radio telescope).To ensure the security and stability of the supporting structure,ca...A cable net structure is selected to support its reflecting triangular aluminum panels of FAST(five-hundred-meter aperture spherical radio telescope).To ensure the security and stability of the supporting structure,cable force of typical cables must be monitored on line.Considering the stringent requirements in installation,accuracy,long-term stability and EMI(Electromagnetic interference),most of the commonly used cable force measurement methods or sensors are not suitable for the cable force monitoring of the supporting cable-net of FAST.A method is presents to accomplish the cable force monitoring,which uses a vibrating wire strain gauge to monitor the strain of linear strain area at the anchor head.Experiments have been carried out to verify the feasibility.The method has a series of advantages,such as high reliability,high accuracy,good dynamic performance and durability,easiness of maintenance,technical maturity in industry and EMI shielding.Theoretical analysis shows that there is a linear relationship between the cable body force and anchor head surface strain,and experimental results proves a good linear relationship with excellent repeatability between the cable body force and anchor head surface strain measured by the vibrating wire strain gauge,with a linear fit better than 0.98.Mean square error in practical measuring is 2.5t.The relative error is better than 4%within the scope of the cable force in FAST operation which meets practical demand in FAST engineering.展开更多
文摘针对一种以16/32位ARM处理器为核心的用于桥梁缆索张力的实时监测系统的主控制器部分硬件设计过程进行了介绍.通过高功能、低功耗的LPC2138,12位4通道的A/D转换MAX1247和GPRS模块M23G,实现了桥梁缆索监测系统数据采集与发送的硬件设计和检测.经测试,本系统在实验室阶段最高采样速率为62.5 KB,实际GPRS网络传输速率为40 KB左右,完全满足缆索张力监测要求.最高频率为10 KB.
基金Supported by the National Natural Science Foundation of China(No.11173035,11273036)
文摘A cable net structure is selected to support its reflecting triangular aluminum panels of FAST(five-hundred-meter aperture spherical radio telescope).To ensure the security and stability of the supporting structure,cable force of typical cables must be monitored on line.Considering the stringent requirements in installation,accuracy,long-term stability and EMI(Electromagnetic interference),most of the commonly used cable force measurement methods or sensors are not suitable for the cable force monitoring of the supporting cable-net of FAST.A method is presents to accomplish the cable force monitoring,which uses a vibrating wire strain gauge to monitor the strain of linear strain area at the anchor head.Experiments have been carried out to verify the feasibility.The method has a series of advantages,such as high reliability,high accuracy,good dynamic performance and durability,easiness of maintenance,technical maturity in industry and EMI shielding.Theoretical analysis shows that there is a linear relationship between the cable body force and anchor head surface strain,and experimental results proves a good linear relationship with excellent repeatability between the cable body force and anchor head surface strain measured by the vibrating wire strain gauge,with a linear fit better than 0.98.Mean square error in practical measuring is 2.5t.The relative error is better than 4%within the scope of the cable force in FAST operation which meets practical demand in FAST engineering.