CuI thin films with nano-scale grains of about 35nm were deposited via spraying method with using acetonitrile as solvent. The influence of iodine doping concentration in acetonitrile solution on the structure, topogr...CuI thin films with nano-scale grains of about 35nm were deposited via spraying method with using acetonitrile as solvent. The influence of iodine doping concentration in acetonitrile solution on the structure, topographic and optical properties of CuI thin films was investigated. X-ray diffraction results showed that CuI iodine-doped films doped CuI:I2 were in γ-phase of zinc blende structure with (111) preferential plane. Scanning electron microscopy revealed that the microstructure of CuI films depended on the relative amount of doping iodine in the solution. When the iodine doping amount in acetonitrile solution was 0.025 g, the film was uniform and compact, the optical transmittance was 75.4% in the part of visible region and the energy band gap was close to 2.96 eV.展开更多
The preparation of La0.4Sr0.6TiO3 (LSTO) buffer layer and YBa2Cu3O7-δ(YBCO) superconducting thick film by a low cost technology was studied. The crystal orientation of LSTO and YBCO films was detected by X-ray di...The preparation of La0.4Sr0.6TiO3 (LSTO) buffer layer and YBa2Cu3O7-δ(YBCO) superconducting thick film by a low cost technology was studied. The crystal orientation of LSTO and YBCO films was detected by X-ray diffraction, the conductivity of LSTO film and superconductivity of YBCO coating were investigated by standard four-probe method. Excellent in-plane alignment, smooth and dense LSTO buffer layer was successfully prepared on textured Ni-W taps by metal organic deposition (MOD). YBCO thick film was fabricated by electrophoretic deposition (EPD). The effects of applied voltage and deposition time on the YBCO coatings properties were studied. The results show that the critical current density of the YBCO coating deposited under 138 V for 35 min was about 600 A/cm2 (0 T, 77 K).展开更多
The effects of boride coating on the bioactivity, antibacterial activity, and electrochemical behavior of commercially pure titanium(CP-Ti) in phosphate buffer solution(PBS) with bovine serum albumin(BSA) were studied...The effects of boride coating on the bioactivity, antibacterial activity, and electrochemical behavior of commercially pure titanium(CP-Ti) in phosphate buffer solution(PBS) with bovine serum albumin(BSA) were studied. The grazing incidence X-ray diffraction(GIXRD) pattern confirmed the formation of a Ti B/Ti B2 coating via boriding process. Scanning electron microscopy(SEM) observation indicated that the Ti B2 cross-linked particles covered the Ti B whiskers. Water contact angle measurements revealed that boriding led to the formation of a surface with intermediate water affinity. Potentiodynamic polarization(PDP) assays demonstrated that the Ti B/Ti B2 coating had acceptable passivation behavior in BSA-containing PBS. Electrochemical impedance spectroscopy(EIS) measurements revealed that the passivation behavior of the CP-Ti and the borided samples was improved by increasing exposure time. Based on the Mott-Schottky(M-S) tests, it was realized that the charge carriers of passive films of both samples decreased with increasing exposure time in BSA-containing PBS. The bioactivity test results in a simulated body fluid showed that the Ti B/Ti B2 coating switched the CP-Ti from bioinert to bioactive material. Finally, the antibacterial activity test of the Ti B/Ti B2 coating against Escherichia coli and Staphylococcus aureus indicated 99% antibacterial activity.展开更多
An electron transporting material of TFTTP (4-(5-hexylthiophene-2-yl)-2,6-bis(5-trifluoromethyl)thiophen-2-yl)pyridine) was investigated as a cathode buffer layer to enhance the power efficiency of organic sola...An electron transporting material of TFTTP (4-(5-hexylthiophene-2-yl)-2,6-bis(5-trifluoromethyl)thiophen-2-yl)pyridine) was investigated as a cathode buffer layer to enhance the power efficiency of organic solar cells (OSCs) based on subphthalocyanine and C60. The overall power conversion efficiency was increased by a factor of 1.31 by inserting the TFTTP interfacial layer between the active layer and metallic cathode. The inner mechanism responsible for the performance enhancement of OSCs was systematically studied with the simulation of dark diode behavior and optical field distribution inside the devices as well as the characterization of device photocurrent. The results showed that the TFTTP layer could significantly increase the built-in potential in the devices, leading to the enhanced dissociation of charge transfer excitons. In addition, by using TFTTP as the buffer layer, a better Ohmic contact at C60/metal interface was formed, facilitating more efficient free charge carrier collection.展开更多
CdS/CdTe solar cells with ZnTe/ZnTe: Cu buffer layers were fabricated and studied. The energy band structure of it was analyzed. The C-V, I-V characteristics and the spectral response show that the ZnTe/ZnTe:Cu buff...CdS/CdTe solar cells with ZnTe/ZnTe: Cu buffer layers were fabricated and studied. The energy band structure of it was analyzed. The C-V, I-V characteristics and the spectral response show that the ZnTe/ZnTe:Cu buffer layers improve the back contact characteristic properties, the diode characteristics of the forward junction and the short-wave spectral response of the CdTe solar cells. The ZnTe/ZnTe-Cu buffer layers affect the solar cell conversion efficiencv and its fill factor.展开更多
To evaluate the influence of the ZnO buffer layer and A1 proportion on the properties of ZnO: A1 (AZO)/ZnO bi-layer films, a series of AZO/ZnO films are deposited on the quartz substrates by electron beam evaporati...To evaluate the influence of the ZnO buffer layer and A1 proportion on the properties of ZnO: A1 (AZO)/ZnO bi-layer films, a series of AZO/ZnO films are deposited on the quartz substrates by electron beam evaporation. The X-ray diffraction measurement shows that the crystal quality of the films is improved with the increase of the film thickness. The electrical properties of the films are investigated. The carrier concentration and Hall mobility both increase with the increase of buffer layer thickness. However, the resistivity reaches the lowest at about 50 nm-thick buffer layer. The lowest resistivity and the maximum Hall mobility are both obtained at 1 wt% Al concentration. But the optical transmittance of all the films is greater than 80% regardless of the buffer layer thickness with A1 concentration lower than 5 wt% in the visible region.展开更多
We have successfully employed metal-organic chemical vapor deposition (MOCVD) technique to simultaneously deposit double-sided YBa2Cu3O7-δ (YBCO) films on both sides of YzO3/yttria-stabilized zirconia (YSZ)/Ce...We have successfully employed metal-organic chemical vapor deposition (MOCVD) technique to simultaneously deposit double-sided YBa2Cu3O7-δ (YBCO) films on both sides of YzO3/yttria-stabilized zirconia (YSZ)/CeO2 (YYC) buffered biaxially textured Ni-5 at.% W substrates, which is of great prospect to cut the production cost of YBCO coated conductors. X-ray diffraction analysis revealed that both sides of YBCO film were purely c-axis oriented and highly textured. The co-scan of (005) YBCO and Ф-scan of (103) YBCO yielded full width at half maximum (FWHM) values of 4.9° and 6.6° for one side of double-sided YBCO film, respectively, as well as 4.4° and 6.4° for the other side. The current transportation measurements performed on such double-sided 500 nm-thickness YBCO films showed the self-field critical current density (Jc) at 77 K of 0.6 MA/cm^2 and 1.2 MA/cm^2, respectively. Further research is in the process of exploring new solution to improve the Jc in practice.展开更多
Highly efficient and stable polymer solar cells (PSCs) have been fabricated by adopting solution-derived hybrid poly(ethylene glycol)-titanium oxide (PEG-TiOx) nanocomposite films as a novel and universal cathod...Highly efficient and stable polymer solar cells (PSCs) have been fabricated by adopting solution-derived hybrid poly(ethylene glycol)-titanium oxide (PEG-TiOx) nanocomposite films as a novel and universal cathode buffer layer (CBL), which can greatly improve device performance by reducing interface energy barriers and enhancing charge extraction/collection. The performance of inverted PSCs with varied bulk-heterojunctions (BHJs) based on this hybrid nanocomposite CBL was found to be much better than those of control devices with a pure TiOx CBL or without a CBL. An excellent power conversion efficiency up to 9.05% under AM 1.5G irradiation (100 mW-cm^-2) was demonstrated, which represents a record high value for inverted PSCs with TiOx-based interface materials.展开更多
BiFeO_3 (BFO) thin films with BaTiO_3 (BTO) or SrTiO_3 (STO) as buffer layer were epitaxially grown on SrRuO_3-covered SrTiO_3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain ...BiFeO_3 (BFO) thin films with BaTiO_3 (BTO) or SrTiO_3 (STO) as buffer layer were epitaxially grown on SrRuO_3-covered SrTiO_3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain in the BFO films, whereas the STO buffer causes compressive strain. Different ferroelectric domain structures caused by these two strain statuses are revealed by piezoelectric force microscopy. Electrical and magnetical measurements show that the tensile-strained BFO/BTO samples have reduced leakage current and large ferroelectric polarization and magnetization, compared with compressively strained BFO/STO. These results demonstrate that the electrical and magnetical properties of BFO thin films can be artificially modified by using a buffer layer.展开更多
基金Project (2091003) supported by Beijing Natural Science Foundation, China
文摘CuI thin films with nano-scale grains of about 35nm were deposited via spraying method with using acetonitrile as solvent. The influence of iodine doping concentration in acetonitrile solution on the structure, topographic and optical properties of CuI thin films was investigated. X-ray diffraction results showed that CuI iodine-doped films doped CuI:I2 were in γ-phase of zinc blende structure with (111) preferential plane. Scanning electron microscopy revealed that the microstructure of CuI films depended on the relative amount of doping iodine in the solution. When the iodine doping amount in acetonitrile solution was 0.025 g, the film was uniform and compact, the optical transmittance was 75.4% in the part of visible region and the energy band gap was close to 2.96 eV.
基金Project(N100602010)supported by the Fundamental Research Funds for the Central Universities of China
文摘The preparation of La0.4Sr0.6TiO3 (LSTO) buffer layer and YBa2Cu3O7-δ(YBCO) superconducting thick film by a low cost technology was studied. The crystal orientation of LSTO and YBCO films was detected by X-ray diffraction, the conductivity of LSTO film and superconductivity of YBCO coating were investigated by standard four-probe method. Excellent in-plane alignment, smooth and dense LSTO buffer layer was successfully prepared on textured Ni-W taps by metal organic deposition (MOD). YBCO thick film was fabricated by electrophoretic deposition (EPD). The effects of applied voltage and deposition time on the YBCO coatings properties were studied. The results show that the critical current density of the YBCO coating deposited under 138 V for 35 min was about 600 A/cm2 (0 T, 77 K).
基金Iran National Science Foundation(INSF)for supporting the research under project No.95841122.
文摘The effects of boride coating on the bioactivity, antibacterial activity, and electrochemical behavior of commercially pure titanium(CP-Ti) in phosphate buffer solution(PBS) with bovine serum albumin(BSA) were studied. The grazing incidence X-ray diffraction(GIXRD) pattern confirmed the formation of a Ti B/Ti B2 coating via boriding process. Scanning electron microscopy(SEM) observation indicated that the Ti B2 cross-linked particles covered the Ti B whiskers. Water contact angle measurements revealed that boriding led to the formation of a surface with intermediate water affinity. Potentiodynamic polarization(PDP) assays demonstrated that the Ti B/Ti B2 coating had acceptable passivation behavior in BSA-containing PBS. Electrochemical impedance spectroscopy(EIS) measurements revealed that the passivation behavior of the CP-Ti and the borided samples was improved by increasing exposure time. Based on the Mott-Schottky(M-S) tests, it was realized that the charge carriers of passive films of both samples decreased with increasing exposure time in BSA-containing PBS. The bioactivity test results in a simulated body fluid showed that the Ti B/Ti B2 coating switched the CP-Ti from bioinert to bioactive material. Finally, the antibacterial activity test of the Ti B/Ti B2 coating against Escherichia coli and Staphylococcus aureus indicated 99% antibacterial activity.
文摘An electron transporting material of TFTTP (4-(5-hexylthiophene-2-yl)-2,6-bis(5-trifluoromethyl)thiophen-2-yl)pyridine) was investigated as a cathode buffer layer to enhance the power efficiency of organic solar cells (OSCs) based on subphthalocyanine and C60. The overall power conversion efficiency was increased by a factor of 1.31 by inserting the TFTTP interfacial layer between the active layer and metallic cathode. The inner mechanism responsible for the performance enhancement of OSCs was systematically studied with the simulation of dark diode behavior and optical field distribution inside the devices as well as the characterization of device photocurrent. The results showed that the TFTTP layer could significantly increase the built-in potential in the devices, leading to the enhanced dissociation of charge transfer excitons. In addition, by using TFTTP as the buffer layer, a better Ohmic contact at C60/metal interface was formed, facilitating more efficient free charge carrier collection.
基金the High Technology Research and Development Programme of China(No.2003AA513010)the National Natural Science Foundation of China(No.50079030).
文摘CdS/CdTe solar cells with ZnTe/ZnTe: Cu buffer layers were fabricated and studied. The energy band structure of it was analyzed. The C-V, I-V characteristics and the spectral response show that the ZnTe/ZnTe:Cu buffer layers improve the back contact characteristic properties, the diode characteristics of the forward junction and the short-wave spectral response of the CdTe solar cells. The ZnTe/ZnTe-Cu buffer layers affect the solar cell conversion efficiencv and its fill factor.
基金supported by the Foundation of Zhejiang Educational Committee (No.Z201018276)
文摘To evaluate the influence of the ZnO buffer layer and A1 proportion on the properties of ZnO: A1 (AZO)/ZnO bi-layer films, a series of AZO/ZnO films are deposited on the quartz substrates by electron beam evaporation. The X-ray diffraction measurement shows that the crystal quality of the films is improved with the increase of the film thickness. The electrical properties of the films are investigated. The carrier concentration and Hall mobility both increase with the increase of buffer layer thickness. However, the resistivity reaches the lowest at about 50 nm-thick buffer layer. The lowest resistivity and the maximum Hall mobility are both obtained at 1 wt% Al concentration. But the optical transmittance of all the films is greater than 80% regardless of the buffer layer thickness with A1 concentration lower than 5 wt% in the visible region.
基金supported by the National Natural Science Foundation of China(Grant No.51002024)Sichuan Youth Science and Technology Innovation Research Team Funding(Grant No.2011JTD0006)Fundamental Research Funds for the Central Universities(Grant Nos.ZYGX2012J039 and ZYGX2011Z002)
文摘We have successfully employed metal-organic chemical vapor deposition (MOCVD) technique to simultaneously deposit double-sided YBa2Cu3O7-δ (YBCO) films on both sides of YzO3/yttria-stabilized zirconia (YSZ)/CeO2 (YYC) buffered biaxially textured Ni-5 at.% W substrates, which is of great prospect to cut the production cost of YBCO coated conductors. X-ray diffraction analysis revealed that both sides of YBCO film were purely c-axis oriented and highly textured. The co-scan of (005) YBCO and Ф-scan of (103) YBCO yielded full width at half maximum (FWHM) values of 4.9° and 6.6° for one side of double-sided YBCO film, respectively, as well as 4.4° and 6.4° for the other side. The current transportation measurements performed on such double-sided 500 nm-thickness YBCO films showed the self-field critical current density (Jc) at 77 K of 0.6 MA/cm^2 and 1.2 MA/cm^2, respectively. Further research is in the process of exploring new solution to improve the Jc in practice.
文摘Highly efficient and stable polymer solar cells (PSCs) have been fabricated by adopting solution-derived hybrid poly(ethylene glycol)-titanium oxide (PEG-TiOx) nanocomposite films as a novel and universal cathode buffer layer (CBL), which can greatly improve device performance by reducing interface energy barriers and enhancing charge extraction/collection. The performance of inverted PSCs with varied bulk-heterojunctions (BHJs) based on this hybrid nanocomposite CBL was found to be much better than those of control devices with a pure TiOx CBL or without a CBL. An excellent power conversion efficiency up to 9.05% under AM 1.5G irradiation (100 mW-cm^-2) was demonstrated, which represents a record high value for inverted PSCs with TiOx-based interface materials.
基金supported by the National Key Basic Research Program of China (Grant Nos. 2014CB921002, and 2013CBA01703)the National Natural Science Foundation of China (Grant Nos. 11174355, 11674385, and 11574365)the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07030200)
文摘BiFeO_3 (BFO) thin films with BaTiO_3 (BTO) or SrTiO_3 (STO) as buffer layer were epitaxially grown on SrRuO_3-covered SrTiO_3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain in the BFO films, whereas the STO buffer causes compressive strain. Different ferroelectric domain structures caused by these two strain statuses are revealed by piezoelectric force microscopy. Electrical and magnetical measurements show that the tensile-strained BFO/BTO samples have reduced leakage current and large ferroelectric polarization and magnetization, compared with compressively strained BFO/STO. These results demonstrate that the electrical and magnetical properties of BFO thin films can be artificially modified by using a buffer layer.