Due to large size and different popularity for different part of the video, most proxy caches for streaming medias cache only a part of the video. Thus, an accurate understanding on the internal popularity distributio...Due to large size and different popularity for different part of the video, most proxy caches for streaming medias cache only a part of the video. Thus, an accurate understanding on the internal popularity distribution of media objects in streaming applications is very important for the development of efficient cache mechanisms. This letter shows that the internal popularity of popular streaming media obeys a k-transformed Zipf-like distribution through analyzing two 6-month long traces recorded at different streaming video servers of an entertainment video-on-demand provider. This empirical model can be used to design an efficient cach- ing algorithm.展开更多
Some unsafe languages,like C and C++,let programmers maximize performance but are vulnerable to memory errors which can lead to program crashes and unpredictable behavior.Aiming to solve the problem,traditional memory...Some unsafe languages,like C and C++,let programmers maximize performance but are vulnerable to memory errors which can lead to program crashes and unpredictable behavior.Aiming to solve the problem,traditional memory allocating strategy is improved and a new probabilistic memory allocation technology is presented.By combining random memory allocating algorithm and virtual memory,memory errors are avoided in all probability during software executing.By replacing default memory allocator to manage allocation of heap memory,buffer overflows and dangling pointers are prevented.Experiments show it is better than Diehard of the following aspects:memory errors prevention,performance in memory allocation set and ability of controlling working set.So probabilistic memory allocation is a valid memory errors prevention technology and it can tolerate memory errors and provide probabilistic memory safety effectively.展开更多
基金Supported by the National Natural Science Foundation of China (No.60302004), the Australian Research Council (Grant LX0240468) and Natural Science Foun-dation of Hubei, China (No.2005ABA264).
文摘Due to large size and different popularity for different part of the video, most proxy caches for streaming medias cache only a part of the video. Thus, an accurate understanding on the internal popularity distribution of media objects in streaming applications is very important for the development of efficient cache mechanisms. This letter shows that the internal popularity of popular streaming media obeys a k-transformed Zipf-like distribution through analyzing two 6-month long traces recorded at different streaming video servers of an entertainment video-on-demand provider. This empirical model can be used to design an efficient cach- ing algorithm.
基金supported by the Natural Science Foundation of China under Grant No.61100205the National High-Tech Research and Development Plan of China under Grant No.2009AA01Z433the Project of the Fundamental Research Funds of Beijing Institute of Technology
文摘Some unsafe languages,like C and C++,let programmers maximize performance but are vulnerable to memory errors which can lead to program crashes and unpredictable behavior.Aiming to solve the problem,traditional memory allocating strategy is improved and a new probabilistic memory allocation technology is presented.By combining random memory allocating algorithm and virtual memory,memory errors are avoided in all probability during software executing.By replacing default memory allocator to manage allocation of heap memory,buffer overflows and dangling pointers are prevented.Experiments show it is better than Diehard of the following aspects:memory errors prevention,performance in memory allocation set and ability of controlling working set.So probabilistic memory allocation is a valid memory errors prevention technology and it can tolerate memory errors and provide probabilistic memory safety effectively.