An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effecti...An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value.展开更多
Grass buffer strips limit the transfer of pesticides from cultivated fields to rivers. These solutions are generally efficient at reducing polluted surface flows, mainly by infiltration of the soil, raising the questi...Grass buffer strips limit the transfer of pesticides from cultivated fields to rivers. These solutions are generally efficient at reducing polluted surface flows, mainly by infiltration of the soil, raising the question of the fate of the infiltrated pollutants. An environmental evaluation was conducted on the efficiency of a grass strip receiving diuron-contaminated water from an uphill vineyard in France. During two runoff events, the following measurements were taken: surface inflow and outflow with Venturi flumes, vertical percolated flow below the root layer (0-50 cm), and variations in water and solute content of the root layer. One runoff event occurred under natural rainfall conditions, while the other runoff event was artificially provoked with water doped by diuron and bromide. For the natural runoff event, representative of medium intensity events, 94% of the diuron was retained in the root layer, whereas 2% left the grass strip by surface runoff and 4% left the grass strip in the water percolating under the root zone. For the artificial event, representative of intense runoff events, more than half of the incoming diuron was retained by the grass strip, whereas 24% and 18% of it were transferred by surface runoff and percolation, respectively. These results showed that the capacity of the root layer to retain diuron was highly significant despite a large percolation flux. However, for large runoff events, surface and subsurface losses can still be considerable, up to 40% of the pesticide load entering the strip.展开更多
基金Projects(61174040,61104178,61374136) supported by the National Natural Science Foundation of ChinaProject(12JC1403400) supported by Shanghai Commission of Science and Technology,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value.
基金Supported by the French Forestry and Rural Affairs Department of the Ministry of Agriculture and Fishing,Cemagref and INRA
文摘Grass buffer strips limit the transfer of pesticides from cultivated fields to rivers. These solutions are generally efficient at reducing polluted surface flows, mainly by infiltration of the soil, raising the question of the fate of the infiltrated pollutants. An environmental evaluation was conducted on the efficiency of a grass strip receiving diuron-contaminated water from an uphill vineyard in France. During two runoff events, the following measurements were taken: surface inflow and outflow with Venturi flumes, vertical percolated flow below the root layer (0-50 cm), and variations in water and solute content of the root layer. One runoff event occurred under natural rainfall conditions, while the other runoff event was artificially provoked with water doped by diuron and bromide. For the natural runoff event, representative of medium intensity events, 94% of the diuron was retained in the root layer, whereas 2% left the grass strip by surface runoff and 4% left the grass strip in the water percolating under the root zone. For the artificial event, representative of intense runoff events, more than half of the incoming diuron was retained by the grass strip, whereas 24% and 18% of it were transferred by surface runoff and percolation, respectively. These results showed that the capacity of the root layer to retain diuron was highly significant despite a large percolation flux. However, for large runoff events, surface and subsurface losses can still be considerable, up to 40% of the pesticide load entering the strip.