Aim In this study, compound metformin/glipizide bilayer extended release tablets were formulated with hydroxypropyl methylcellulose (HPMC) by wet granulation technique in order to tackle the problems associated with...Aim In this study, compound metformin/glipizide bilayer extended release tablets were formulated with hydroxypropyl methylcellulose (HPMC) by wet granulation technique in order to tackle the problems associated with the muhidrug therapy of non-insulin dependent diabetes mellitus. Me^ls High-dose metformin is difficult to formulate into a tablet dosage form due to its poor compressibility and compactibility. In this study, the way to overcome the difficulty was to utilize stearic alcohol to prepare the tablet formulation. The influences of viscosity, amount of HPMC, and weight of fillers were investigated. The optimal formulation had acceptable physicochemical properties and released metformin and glipizide over 10 h. Results The data of metformin obtained from in vitro release fitted Higuchi kinetics best, while the release of glipizide in vitro was found to follow zero kinetics. Conclusion Compound metformin/glipizide bilayer extended release tablets have been successfully developed.展开更多
A composite material was fabricated by applying a biodegradable drug delivery coating,consisting of poly(3-hydroxyburyrate-co-3-hydroxyvalerate)(PHBV) and icariin,to an anodic oxidized titanium plate.The coating w...A composite material was fabricated by applying a biodegradable drug delivery coating,consisting of poly(3-hydroxyburyrate-co-3-hydroxyvalerate)(PHBV) and icariin,to an anodic oxidized titanium plate.The coating was prepared by evaporating chloroform solution containing PHBV and icariin on the titanium plate under vacuum condition.Icariin/PHBV coated titanium plates significantly enhance the proliferation of MG-63 cells compared with the PHBV coated and anodic oxidized ones.Increased icariin contained in the coating displays an elevated influence on cell proliferation.The results show that icariin gradually releases from the coating to cells mainly through the phospholipid-based cellular membrane instead of the culture medium.The overall results suggest that the novel icariin/PHBV coating can be used to enhance the bioactivity of titanium based orthopedic implants.展开更多
文摘Aim In this study, compound metformin/glipizide bilayer extended release tablets were formulated with hydroxypropyl methylcellulose (HPMC) by wet granulation technique in order to tackle the problems associated with the muhidrug therapy of non-insulin dependent diabetes mellitus. Me^ls High-dose metformin is difficult to formulate into a tablet dosage form due to its poor compressibility and compactibility. In this study, the way to overcome the difficulty was to utilize stearic alcohol to prepare the tablet formulation. The influences of viscosity, amount of HPMC, and weight of fillers were investigated. The optimal formulation had acceptable physicochemical properties and released metformin and glipizide over 10 h. Results The data of metformin obtained from in vitro release fitted Higuchi kinetics best, while the release of glipizide in vitro was found to follow zero kinetics. Conclusion Compound metformin/glipizide bilayer extended release tablets have been successfully developed.
基金Project (2010DFA32270) supported by International Science & Technology Cooperation Program of ChinaProject (2010) supported by Scientific Research Foundation for the Returned Oversea Scholars of Ministry of Education of China
文摘A composite material was fabricated by applying a biodegradable drug delivery coating,consisting of poly(3-hydroxyburyrate-co-3-hydroxyvalerate)(PHBV) and icariin,to an anodic oxidized titanium plate.The coating was prepared by evaporating chloroform solution containing PHBV and icariin on the titanium plate under vacuum condition.Icariin/PHBV coated titanium plates significantly enhance the proliferation of MG-63 cells compared with the PHBV coated and anodic oxidized ones.Increased icariin contained in the coating displays an elevated influence on cell proliferation.The results show that icariin gradually releases from the coating to cells mainly through the phospholipid-based cellular membrane instead of the culture medium.The overall results suggest that the novel icariin/PHBV coating can be used to enhance the bioactivity of titanium based orthopedic implants.