期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多任务学习的国际疾病分类自动编码模型 被引量:1
1
作者 张艺 滕飞 胡节 《广西科学》 CAS 北大核心 2023年第1期114-120,共7页
国际疾病分类(International Classification of Diseases,ICD)编码任务是将疾病编码分配给电子病历,每份电子病历分配一个或多个ICD编码。现有的方法大多考虑临床文本中症状与诊断之间的关系,而对诊断与诊断间关系以及症状与症状间关... 国际疾病分类(International Classification of Diseases,ICD)编码任务是将疾病编码分配给电子病历,每份电子病历分配一个或多个ICD编码。现有的方法大多考虑临床文本中症状与诊断之间的关系,而对诊断与诊断间关系以及症状与症状间关系缺乏考量。针对这一现状,对于诊断与诊断间关系,构造编码共现任务,采用多任务的形式使得预测结果不依赖于标签之间的顺序关系,且不会进行错误预测的传播;对于症状与症状间关系,使用对比学习获取有意义的表征,学习同一临床文本中的症状一致性。通过以上任务的组合,构建基于多任务学习的ICD自动编码模型框架。在MIMIC-Ⅲ数据集上的实验表明,所提出的方法相较于优异模型在Micro-f1指标上提高了1.0%,在Micro-auc指标上提高了0.3%,在P@5指标上提高了0.7%。 展开更多
关键词 ICD编码 多任务学习 编码共现 对比学习 自然语言处理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部