期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
图卷积增强多路解码的实体关系联合抽取模型 被引量:3
1
作者 乔勇鹏 于亚新 +3 位作者 刘树越 王子腾 夏子芳 乔佳琪 《计算机研究与发展》 EI CSCD 北大核心 2023年第1期153-166,共14页
从无结构化自然语言文本中抽取实体关系三元组是构建大型知识图谱中最为关键的一步,但现有研究仍存在3方面问题:1)忽略文本中因多个三元组共享同一实体而产生的实体关系重叠问题;2)当前以编码器-解码器为基础的联合抽取模型未充分考虑... 从无结构化自然语言文本中抽取实体关系三元组是构建大型知识图谱中最为关键的一步,但现有研究仍存在3方面问题:1)忽略文本中因多个三元组共享同一实体而产生的实体关系重叠问题;2)当前以编码器-解码器为基础的联合抽取模型未充分考虑文本语句词之间的依赖关系;3)部分三元组序列过长导致误差累积与传播,影响实体关系抽取的精度和效率.基于此,提出基于图卷积增强多路解码的实体关系联合抽取模型(graph convolution-enhanced multi-channel decoding joint entity and relation extraction model,GMCD-JERE).首先,基于BiLSTM作为模型编码器,强化文本中词的双向特征融合;其次,通过图卷积多跳特征融合句中词之间的依赖关系,提高关系抽取准确性;此外,改进传统模型按三元组先后顺序的解码机制,通过多路解码三元组机制,解决实体关系重叠问题,同时缓解三元组序列过长造成误差累积、传播的影响;最后,实验选用当前3个主流模型进行性能验证,在NYT(New York times)数据集上结果表明在精确率、召回率和F1这3个指标上分别提升了4.3%,5.1%,4.8%,同时在WebNLG(Web natural language generation)数据集上验证以关系为开始的抽取顺序. 展开更多
关键词 关系抽取 编码器–解码器 多路解码 关系重叠 图卷积神经网络
下载PDF
基于门控卷积和堆叠自注意力的离线手写汉字识别算法研究
2
作者 罗序良 吴毅良 +1 位作者 刘翠媚 郭凤婵 《计算机科学与应用》 2024年第5期48-60,共13页
针对离线手写文本识别(HTR)在自然语言处理领域中的重要性以及其广泛应用于帮助视障用户、人机交互和自动录入等方面的实际需求,本研究提出了一个全新的模型。该模型在门控卷积网络的基础上引入了堆叠自注意力编码器–解码器,用于离线... 针对离线手写文本识别(HTR)在自然语言处理领域中的重要性以及其广泛应用于帮助视障用户、人机交互和自动录入等方面的实际需求,本研究提出了一个全新的模型。该模型在门控卷积网络的基础上引入了堆叠自注意力编码器–解码器,用于离线识别手写的汉字文本。由于书写风格的多样性、不同字符之间的视觉相似性、字符重叠以及原始文档中的噪音等挑战,设计准确且灵活的HTR系统具有相当大的难度,特别是当处理较为复杂、包含大量字符的文本时,算法的学习能力显得不足。为了解决这一问题,我们提出的模型包括特征提取层、编码器层和解码器层。其中,特征提取层从输入的手写图像中提取高纬度的不变特征图,而编码器和解码器层则相应地转录出文本。实验结果显示,该模型在HCTD数据集上的字符错误率(CER)为6.72,单词错误率(WER)为11.11;在HCWD数据集上的实验结果CER为6.22和WER为7.17。相对于其他研究者的模型,本文设计的模型在手写汉字识别率上提升了11%。 展开更多
关键词 汉字识别 自注意力编码器–解码器 门控卷积 离线手写文本识别
下载PDF
基于双流融合网络的输送带跑偏检测方法
3
作者 杨志方 张立亚 +2 位作者 郝博南 刘渊 赵青 《煤炭科学技术》 EI CAS CSCD 北大核心 2023年第S02期259-267,共9页
传统输送带跑偏检测方法中,接触式检测技术成本高,非接触式检测技术则精度低。随着人工智能技术的发展,虽然基于卷积神经网络的方法可以有效提高检测精度,但受限于卷积操作本身局部运算特性的限制,仍存在对长距离、全局信息感知不足等问... 传统输送带跑偏检测方法中,接触式检测技术成本高,非接触式检测技术则精度低。随着人工智能技术的发展,虽然基于卷积神经网络的方法可以有效提高检测精度,但受限于卷积操作本身局部运算特性的限制,仍存在对长距离、全局信息感知不足等问题,很难再提升在输送带边缘检测上的精度。为解决上述问题,(1)通过将传统卷积神经网络的卷积对局部特征的提取能力与Transformer结构对全局、长距离信息感知能力相结合,提出了一种全局与局部信息相互融合的双流输送带边缘检测网络模型(Dual-Flow Transformer Network,DFTNet),能够较好地提高输送带边缘检测精度并抑制输送带图像噪声和背景的干扰;(2)通过设计卷积神经网络(Convolutional Neural Network,CNN)和转换器Transformer特征融合模块,形成双流编码器–解码器结构,利用结构上的巧妙设计,可以更好地融合全局上下文信息,避免了Transformer结构在大规模数据集上预训练,可以灵活调节网络结构;(3)通过从实际工业场景中所采集到多场景的运输机输送带图片,构建了包含5种不同场景下多角度、不同位置的输送带输送带数据集。研究结果表明,双流融合网络DFTNet综合性能最佳,均交并比mIou达91.08%,准确率ACC达99.48%,平均精确率m Precision达91.88%,平均召回率mRecall达96.22%,相比纯卷积神经网络HRNet分别提升了25.36%、0.29%、17.70%与29.46%,相比全卷积神经网络(Fully Convolutional Networks,FCN)分别提升了29.5%、0.32%、24.77%与34.13%,在参数量、计算速度上均有较大提升。同时,处理图像帧率达53.07 fps,满足工业中实时性的要求,具有较大实用价值。 展开更多
关键词 输送带跑偏 边缘检测 神经网络 编码器–解码器 图像分割
下载PDF
基于局部加权周期趋势分解算法和注意力机制的变压器顶层油温多步预测
4
作者 王德文 吕哲 《电力科学与工程》 2022年第11期1-8,共8页
首先,应用局部加权周期趋势分解算法(seasonal and trend decomposition procedure based on loess,STL),将变压器顶层油温分解成趋势、周期和残差分量;然后,使用一维卷积网络和编码器–解码器提取特征,生成特征矩阵;最后,引入注意力机... 首先,应用局部加权周期趋势分解算法(seasonal and trend decomposition procedure based on loess,STL),将变压器顶层油温分解成趋势、周期和残差分量;然后,使用一维卷积网络和编码器–解码器提取特征,生成特征矩阵;最后,引入注意力机制挖掘特征矩阵中对当前预测结果产生显著影响的信息,并随预测时间更新,最终得到多步预测结果。算例分析表明,与传统预测方法相比,该方法能够有效提取顶层油温数据特征并缓解预测时间增长带来的预测误差累积,具有更高的多步预测精度。 展开更多
关键词 电力变压器 顶层油温 局部加权周期趋势分解 注意力机制 编码器–解码器 多步预测
下载PDF
Frame-bitrate-change based steganography for voice-over-IP 被引量:4
5
作者 刘进 田晖 周可 《Journal of Central South University》 SCIE EI CAS 2014年第12期4544-4552,共9页
Steganography based on bits-modification of speech frames is a kind of commonly used method, which targets at RTP payloads and offers covert communications over voice-over-IP(Vo IP). However, direct modification on fr... Steganography based on bits-modification of speech frames is a kind of commonly used method, which targets at RTP payloads and offers covert communications over voice-over-IP(Vo IP). However, direct modification on frames is often independent of the inherent speech features, which may lead to great degradation of speech quality. A novel frame-bitrate-change based steganography is proposed in this work, which discovers a novel covert channel for Vo IP and introduces less distortion. This method exploits the feature of multi-rate speech codecs that the practical bitrate of speech frame is identified only by speech decoder at receiving end. Based on this characteristic, two steganography strategies called bitrate downgrading(BD) and bitrate switching(BS)are provided. The first strategy substitutes high bit-rate speech frames with lower ones to embed secret message, which introduces very low distortion in practice, and much less than other bits-modification based methods with the same embedding capacity. The second one encodes secret message bits into different types of speech frames, which is an alternative choice for supplement. The two strategies are implemented and tested on our covert communication system Steg Vo IP. The experiment results show that our proposed method is effective and fulfills the real-time requirement of Vo IP communication. 展开更多
关键词 covert communication steganography multi-rate speech codec voice-over-IP(VOIP)
下载PDF
迈向创造性语言生成:汉语幽默自动生成的探索 被引量:4
6
作者 谭红叶 闫真 +1 位作者 李茹 敬毅民 《中国科学:信息科学》 CSCD 北大核心 2018年第11期1497-1509,共13页
幽默生成是计算创造性任务之一,能够赋予计算机一定的个性化与创造性,而且可以提升用户体验.本文以笑话的生成进行汉语幽默生成的探索性研究.首先提出一个符合当前自然语言生成技术的笑话生成任务:给定笑话的主体部分,生成相应的笑点句... 幽默生成是计算创造性任务之一,能够赋予计算机一定的个性化与创造性,而且可以提升用户体验.本文以笑话的生成进行汉语幽默生成的探索性研究.首先提出一个符合当前自然语言生成技术的笑话生成任务:给定笑话的主体部分,生成相应的笑点句.然后,尝试了基于经典编码器–解码器框架的方法与基于生成对抗网络的方法来完成该任务.为了克服编码器–解码器框架中对幽默特点没有建模的局限,本文在生成对抗网络方法中融入了歧义性、不一致性、语音相似性、普遍性等笑话属性特征来评价、指导笑话的生成.实验结果表明:在生成对抗网络方法中融入笑话属性特征后,系统输出构成笑话的比例提升6个百分点.尽管从总体来看系统自动生成的笑点句构成笑话的比例还偏低,但本文通过对幽默生成问题的研究探索,带动了对创造性语言生成问题的洞察与理解,标志着我们向创造性语言生成的探索迈进了一步. 展开更多
关键词 幽默生成 笑话生成 深度学习 编码器–解码器框架 生成对抗网络
原文传递
基于生成对抗网络的点云形状保结构补全 被引量:8
7
作者 缪永伟 刘家宗 +1 位作者 陈佳慧 舒振宇 《中国科学:信息科学》 CSCD 北大核心 2020年第5期675-691,共17页
针对三维点云形状修复补全中难以保持形状精细结构信息的问题,借助于生成对抗网络框架,本文提出了一种自动修复补全三维点云形状的神经网络结构.该网络由生成器和判别器构成.神经网络的生成器采用编码器–解码器结构,以缺失的三维点云... 针对三维点云形状修复补全中难以保持形状精细结构信息的问题,借助于生成对抗网络框架,本文提出了一种自动修复补全三维点云形状的神经网络结构.该网络由生成器和判别器构成.神经网络的生成器采用编码器–解码器结构,以缺失的三维点云形状作为输入,首先通过输入变换和特征变换对齐输入点云数据的采样点位置与特征信息;然后借助权共享多层感知器对各采样点提取局部形状特征并利用最大池化层与多层感知器编码提取出采样点的特征码字;其次将采样点特征码字加上网格坐标数据,解码器使用2个连续的三层感知器折叠操作将网格数据转变成点云形状的缺失补全数据;最后将缺失补全数据与点云输入数据合并,得到完整的三维点云形状.神经网络的判别器则接收真实的完整点云形状数据和生成器生成的完整点云形状数据,并利用与生成器相同的编码器结构判别出点云形状数据的真假并反馈以不断优化生成器,最终使生成器生成足以"以假乱真"的点云形状数据样本.实验表明,针对形状缺失的稠密点云和稀疏点云数据,本文方法在修复补全形状缺失部分的同时能有效保持输入点云形状的精细结构信息. 展开更多
关键词 生成对抗网络 编码器–解码器结构 点云数据 形状补全 折叠操作
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部